
Front-propagation Algorithm: Explainable AI Technique

for Extracting Linear Function Approximations from

Neural Networks

Javier Viaña1[0000-0002-0563-784X]

1 MIT Kavli Institute for Astrophysics and Space Research,

Massachusetts Institute of Technology, Cambridge 02139, USA
vianajr@mit.edu

Abstract. This paper introduces the front-propagation algorithm, a novel eX-

plainable AI (XAI) technique designed to elucidate the decision-making logic of

deep neural networks. Unlike other popular explainability algorithms such as In-

tegrated Gradients or Shapley Values, the proposed algorithm is able to extract

an accurate and consistent linear function explanation of the network in a single

forward pass of the trained model. This nuance sets apart the time complexity of

the front-propagation as it could be running real-time and in parallel with de-
ployed models. We packaged this algorithm in a software called front-prop

and we demonstrate its efficacy in providing accurate linear functions with three

different neural network architectures trained on publicly available benchmark

datasets.

Keywords: Explainable AI (XAI), Deep Learning, Neural Networks, Integrated

Gradients, Shapley Values, Model transparency.

1 Introduction

Neural networks have demonstrated remarkable performance across a myriad of tasks,

ranging from image recognition to natural language processing [1]. However, the in-

herent complexity of these models often renders their decision-making processes

opaque and difficult to interpret, hindering their deployment in critical domains where

transparency and trustworthiness are paramount. In recent years, the pursuit of eXplain-

able AI (XAI) techniques has emerged as a crucial endeavor to demystify the inner

workings of such black-box models [2].

Among the plethora of XAI methodologies, Integrated Gradients has garnered sig-

nificant attention for its effectiveness in attributing feature importance to model predic-

tions [3]. By systematically perturbing input features and integrating the gradients of

model outputs with respect to these perturbations, Integrated Gradients provides in-

sightful explanations for individual predictions, thereby enhancing model interpretabil-

ity.

In this paper, we delve into the realm of explainable AI tools, particularly focusing

on a technique akin to Integrated Gradients, to facilitate the extraction of linear function

approximations from neural networks. The rationale behind this endeavor lies in the

Pre-print and pre-review version.

Accepted for publication in:

Barnabas Bede, Kelly Cohen, and Vladik Kreinovich (eds.), Proceedings of the NAFIPS

International Conference on Fuzzy Systems, Soft Computing, and Explainable AI.

NAFIPS'2024, South Padre Island, Texas, May 27-29, 2024.

2

interpretability and simplicity afforded by linear models [4], which stand in stark con-

trast to the complexity of neural networks. By distilling the essence of neural network

behaviors into linear approximations, we aim to bridge the gap between model com-

plexity and interpretability.

This paper contributes to the burgeoning field of XAI by presenting a novel meth-

odology tailored to extract linear function approximations from neural networks,

thereby shedding light on their decision-making processes. We showcase the efficacy

of our approach through empirical evaluations on benchmark datasets, demonstrating

the utility of linear approximations in enhancing model interpretability without sacri-

ficing performance.

In addition to Integrated Gradients there are currently several other ways to provide

explanations for the predictions of complex machine learning models. To list some:

• Saliency Maps [5], which highlight the most relevant regions of the input data that

contribute to the model's prediction. They are computed by taking the gradient of

the output with respect to the input, effectively identifying the features that have

the greatest impact on the model's decision.

• Gradient-weighted Class Activation Mapping (Grad-CAM) [6], which generates

class-discriminative visual explanations by computing the gradients of the target

class score with respect to the feature maps of a convolutional neural network.
This technique highlights the regions in the input image that are most relevant to

the predicted class.

• Layer-wise Relevance Propagation (LRP) [7], which decomposes the prediction

of a neural network by attributing relevance scores to each neuron in the network's

hidden layers. These relevance scores indicate the contribution of each neuron to

the final prediction, thereby providing insights into the model's decision-making

process.

• Shapley Values [8], an idea that originates from cooperative game theory and aim

to fairly distribute the contribution of each feature to the model's output. In the

context of explainable AI, Shapley values quantify the marginal contribution of

each feature to the prediction, providing a globally consistent explanation for in-
dividual predictions.

• SmoothGrad [9], which improves the interpretability of gradient-based attribution

methods by reducing noise in the gradient signal. It computes the average gradient

across multiple noisy samples of the input data, resulting in smoother and more

reliable explanations for the model's predictions.

• Local Interpretable Model-agnostic Explanations (LIME) [10], which generates

local explanations for individual predictions by fitting an interpretable model

(e.g., linear regression) to perturbed instances of the input data. By approximating

the model's behavior in the vicinity of a particular prediction, LIME provides in-

sights into the decision-making process of complex machine learning models.

These techniques form a diverse toolbox of explainable AI methods that facilitate

the interpretation of complex machine learning models. Which depending on the spe-

cific characteristics of the model and the interpretability requirements of the

3

application, researchers and practitioners can choose the most suitable technique for

their needs.

2 Methodology

The proposed front-propagation algorithm aims to extract a linear function approxi-

mation of the behavior of a neural network in the vicinity of a given instance, denoted

as the base instance. As usual with other distillation techniques, the goal of this algo-

rithm is to generate a simple function that can replace the model while still performing

well for other datapoints that are “near” the base instance. The key difference with other

methods, however, is the low computational cost that is required by the proposed front-

propagation algorithm to obtain such function.

This paper explains the theoretical framework that underlies the aforementioned al-

gorithm and discusses its potential benefits for the AI community. Indeed, the infor-

mation of the linear function approximation is very relevant in various applications, not

only to quantify the contributions of each of the input dimensions, but also to determine

if the network is following a biased or an outlier reasoning, to supervise the model’s

behavior, or simply to extract relevant knowledge of the problem.

To describe the inner workings of the algorithm, we first consider a simple feed-

forward neural network with 𝐻 hidden layers that performs a transformation from a 𝑁!"-dimensional input space 𝐱 = {𝑥#, 𝑥$, … , 𝑥%!"} into a 𝑁&'(-dimensional output

space 𝐲+ = {𝑦+#, 𝑦+#, … , 𝑦+%#$%}, as depicted in Fig.1. If 𝑁&'(was 1, then we would only

need to extract a single linear function approximation of the network. However, in a

generic network, we can expect to look for 𝑁&'(linear functions, each of them associ-

ated to each of the output dimensions. We start from a specific base input instance 𝐱𝐢,
and the associated output of the network 𝐲+𝒊. In order to obtain the coefficients of these

linear approximations, we will traverse all the layers sequentially in a forward-pass

from the input layer to the output layer. Indeed, at every layer we will be calculating

the linear function approximations that replace the network till that point. In other

words, if a given hidden layer, which we denote by 𝑙+, has 𝑁+ neurons, we should be

able to obtain 𝑁+ linear functions. The information of these linear functions at 𝑙+ can

simply be stored in a matrix of dimension 𝑁+ ×𝑁!", which we denote by 𝐌𝐡, where

the entries of the matrix represent the coefficients that multiply each of the input di-

mensions. Therefore, the goal at every layer is to get these matrix coefficients. How-

ever, to do so we first need to compute the gradient of the layer’s outputs with respect

to the layer’s inputs. If we have a fully connected dense layer, this is simply the deriv-

ative of the layer’s activation functions evaluated at the base instance.

4

Fig. 1. Generic feed-forward neural network architecture. Difference in the flow of data in infer-

ence, back-propagation, and front-propagation.

At this point, one can start seeing the similarities between the proposed algorithm

and the back-propagation algorithm:

• The back-propagation algorithm calculates the gradient of the loss function

with respect to the weights and biases, and then corrects those parameters

to optimize the network. In this algorithm the information flows from the

output layer towards the input layer.

• The proposed front-propagation algorithm on the other hand calculates the
gradient of the outputs with respect to the inputs, which then serve as an

explanation of the network’s reasoning. In this algorithm the information

flows from the input layer towards the output layer.

Both the back and front-propagation algorithms are triggered after the network has

made an inference. In the first case to correct the network’s parameters and in the sec-

ond to understand the reasoning of the network. Both algorithms share the same time

complexity, and only require to traverse once the network to obtain the desired results,

which makes the front-propagation very attractive for fast computations.

The name front-propagation was inspired on the similarities with the back-propaga-

tion algorithm and the fact that this algorithm traverses the network in the opposite

direction.

3 Algorithm

Let us consider a generic 𝛾-th neuron of an arbitrary intermediate layer 𝑙+, as shown in

Fig. 2. The value passed to this neuron is the sum of the product between the output

vector of layer	𝑙+-#,	denoted 𝐭(𝐡-𝟏), and the corresponding weight vector 𝐰𝐡,𝛄, plus

⋮

⋮⋮ ⋮

⋮ ⋮

𝑥1

𝑥2

𝑥𝑁𝑖𝑛 𝑦𝑁𝑜𝑢𝑡

𝑦2

𝑦1

𝑙1𝑙𝐻−1𝑙𝐻

Inference

Back − Propagation

Front − Propagation

Directions	

of	Data	Flow

Input Output

5

the bias 𝑏+,3. The output of the studied neuron, denoted by 𝑡(+)3, is then obtained by

mapping this value with the activation function 𝑔+,3. In formulation, 𝑡(+)3 =
𝑔+,3 <𝑏+,3 + ∑ 𝑤+,3,4 ∙%&

45# 𝑡(+-#)'A. This value 𝑡(+)3 is the 𝛾-th entry of the vector 𝐭(𝐡),
which denotes the output vector of layer 𝑙+.

Fig. 2. Transformation of data carried out inside a generic neuron of the network.

We start with the neurons of the network’s first hidden layer, 𝑙6. For a given 𝛼-th neu-

ron of this layer 𝑙6, the output 𝑡(6)7 can be expressed as 𝑔6,7<𝑏6,7 +∑ 𝑤6,7,4 ∙%!"
45# 𝑥4A.

Instead of substituting 𝑥4 with the corresponding values of the instance studied, we

preserve 𝑥4 as a placeholder variable that identifies the 𝑗-th input dimension. We remind

the reader that the goal is to find the linear dependencies that relate the input and the

output spaces, therefore, we do not want to substitute the values of 𝐱.

We denote the argument that is passed to the activation function by 𝑠(𝐱), which for the

case of the neuron studied is 𝑠6,7(𝐱) = 𝑏6,7 +∑ 𝑤6,7,4 ∙%!"
45# 𝑥4. At this point, the term

𝑠6,7(𝐱) is in fact a linear combination of the input dimensions, and the activation func-

tion is the one responsible for introducing the non-linearity in the obtention of 𝑡(6)7. In

order to find the linear dependencies between 𝑡(6)7 and the input dimensions 𝑥4, we

first need to get the derivative of the activation function at the base instance. This is of

course the tangent line that approximates the activation function at the base instance.

We denoted our base instance by 𝐱𝐢, thus, the representation of this point instance in

the dimensions of the activation function is identified by the coordinates

G𝑠6,7(𝐱𝐢), 𝑡(6)7(𝐱𝐢)H, as shown in Fig. 3.

𝐭(𝐡+𝟏) =

𝑡 ℎ+1 1

𝑡 ℎ+1 2

𝑡 ℎ+1 3

𝑡 ℎ+1 4

⋮

𝑡 ℎ+1 𝑁ℎ+1

	Output	Vector	

of	Layer	ℎ + 1
Layer	𝑙ℎ

Neuron	𝛾

	

𝑡(ℎ)1
𝑡(ℎ)2
⋮

𝑡(ℎ)

⋮
𝑡(ℎ)𝑁ℎ

= 𝐭(𝐡)

⋮

𝑤ℎ,𝛾,1

𝑤ℎ,𝛾,2

𝑤ℎ,𝛾,3

𝑤ℎ,𝛾,4

𝑤ℎ,𝛾,𝑁ℎ+1

𝑡(ℎ)𝛾

𝑏ℎ,𝛾

	Output	Vector	

of	Layer	ℎ

6

Fig. 3. Linear function approximation of the activation function around the base instance.

The tangent line of the activation function 𝑔6,7 at the base instance can be expressed

as

𝑞6,7,!(𝑠) = 𝑚6,7,! ∙ 𝑠 + 𝑛6,7,! . (1)

where 𝑞6,7,! <𝑠6,7(𝐱𝐢)A = 𝑔6,7 <𝑠6,7(𝐱𝐢)A and 𝑞6,7,! <𝑠6,7(𝐱𝐢)A = 𝑚6,7,! ∙ 𝑠6,7(𝐱𝐢) +
𝑛6,7,!. The calculation of the slope of this linear function is 𝑚6,7,! and is calculated

simply by applying the derivative of the activation function and evaluating it at the base

instance, i.e.,

𝑚6,7,! = 𝑑𝑔6,7(𝑠)𝑑𝑠 N
8(,*(𝐱𝐢)

. (2)

The calculation of the independent term of the linear function, 𝑛6,7,!, is the obtained by

𝑛6,7,! = 𝑞6,7,! <𝑠6,7(𝐱𝐢)A −𝑚6,7,! ∙ 𝑠6,7(𝐱𝐢). (3)

Once the linear function approximation of the activation function is fully defined, we

then plug the linear function coefficients of 𝑠6,7(𝐱) inside	𝑞6,7,!(𝑠). The result is a lin-

ear combination of linear functions, which can also be expressed as a linear function,

which we denote by 𝑟6,7,!(𝐱),
𝑟6,7,!(𝐱) = 𝑞6,7,! <𝑠6,7(𝐱)A, (4)

this is a new linear function that relates the output of the neuron	𝛼 of layer	𝐻 with the

input dimensions around the vicinity of 𝐱𝐢. We then store the coefficients of 𝑟6,7,!(𝐱)
in a row of the matrix 𝐌𝐇 and move on to the next neuron of layer 𝐻 repeating the same

process.

In the next layer 𝐻 − 1, we will be repeating a similar procedure. We start consider-

ing a neuron 𝛽 of this layer, but instead of using 𝑥4 as the placeholder argument of

𝑠6;#,<(𝐱), we plug the corresponding 𝑟6,4,!(𝐱), which we can retrieved from the matrix

𝐌𝐇, so that

𝑠6;#,<(𝐱) = 𝑏6;#,< +S𝑤6;#,<,4 ∙
%(

45#

𝑟6,4,!(𝐱). (5)

𝑔𝐻,𝛼(𝑠)
Activation

Function

𝑞𝐻,𝛼,𝑖(𝑠)
Tangent

Function

𝑠

𝑡 𝐻 𝛼
(𝑠)

𝑡 𝐻 𝛼
(𝐱𝐢)

𝑠𝐻,𝛼(𝐱𝐢)

7

However, the linear functions 𝑟6,4,!(𝐱) contain inside the placeholder variables of 𝑥4,
which again we should not substitute by the associated values of the base instance.

Instead, we simplify the expression 𝑠6;#,<(𝐱)	by multiplying the 𝑤6;#,<,4 weights

times each of the coefficients of the 𝑟6,4,!(𝐱) functions, which will result in a simple

linear function with the 𝑥4 variables. Subsequently, we can repeat the exact same pro-

cedure that was performed with the activation function of neuron 𝛼.

Following this same strategy in every neuron of the network and regrouping the pa-

rameters we can obtain the linear output function of each neuron, and then storing the

associated coefficients in the corresponding 𝐌 matrix. Once we arrive at the output

layer of the neural network and we have finished filling the entries of 𝐌𝟏, which has a

dimension of 𝑁# ×𝑁!", we would have effectively found the 𝑁# linear functions, of all

the output dimensions, that approximate the behavior of the network around the base

instance chosen.

Time Complexity

This algorithm provides a local explanation for a given instance; therefore, it should be

executed once for every datapoint studied. Unlike other post-hoc explainability algo-

rithms available, the front-propagation does not require making any perturbations in the

input to estimate a linear function approximation of the network. These alternative tech-

niques require many executions of the entire network, which often make them compu-

tationally unattractive for real time explainability requirements. On the other hand, the

front-propagation requires a single execution, thus its time complexity is the same as a

single inference, 𝑂(∑ 𝑁+)6
+5# .

4 Results

We developed and packaged front-prop, an optimized version of the front-propa-

gation algorithm, which is publicly available on GitHub, [11]. The current version of

the code is able to generate real-time linear function explanations of sequential feed

forward models developed in Tensorflow and Pytorch. This version can only tackle

models that include dense layers, dropout layers, softmax layers, batch normalization

layers, and a variety of popular activation functions (ELU, ReLu, SELU, GELU, sig-

moid, tanh, swish, softsign, exponential, hard sigmoid, softplus). Further details on how

to download and execute front-prop along with a model can be found on the de-

scriptions of the code hosted in GitHub.

8

We considered three different use cases to test the package developed with the front-

propagation algorithm:

• Credit granting (classification task): Model trained in Tensorflow, and data obtained

from the University of California Irvine Machine Learning Repository.

• Diabetes prediction (classification task): Model trained in Pytorch, and data ob-

tained from the National Institute of Diabetes and Digestive and Kidney Diseases.

• Temperature prediction (regression task): Model trained in Tensorflow, and data

obtained from the University of California Irvine Machine Learning Repository.

In Figs. 4-6 we show the results of applying the front-propagation algorithm after

having a well-performing trained neural network model in each of the three use cases.

For each of the plots shown in the figures, we applied the following process: First, we

considered a base instance. Second, we obtained the associated output generated by the

neural network. Then, we applied the front-propagation algorithm to this base instance

to obtain a linear function approximation of the model. Logically, if we evaluate the

input of the base instance using this linear function approximation, the result should

match the output obtained with the neural network in the first place. At this point we

want to determine whether the linear function approximation obtained is reliable or not.

To do so, we want to study several points that are nearby the base instance and evaluate

these both with the model and with the linear function. If the results of these two eval-

uations match, we could then say that the linear function is indeed a good approxima-

tion. To generate the points in the surroundings we added random gaussian noise to

each of the input dimensions of the base instance. However, we used a limit on the

allowed maximum deviation, which we identify in the code with the “proximity thresh-

old” variable (which can range from 0 to 1). The code developed allows the user to

decide how many of these exploration points wants to consider for the plots, in all the

figures we set this variable to 1,000. To summarize, each point of the plots represents

a given input instance, near the base instance, that was evaluated twice: first using the

trained neural network, and then using the linear function approximation that was found

by the front-propagation algorithm. The horizontal axis represents the output of the

trained neural network, and the vertical axis represents the output of the linear function

approximation found by front-prop.

The points were colored using the Euclidean distance in the normalized input space

with respect to the base instance. In each figure we show three rows: the first is associ-

ated to a proximity threshold of 0.1, the second with a proximity threshold of 0.5, and

the bottom row represents the case where this threshold is 1, the maximum possible

value.

9

Fig. 4. Credit prediction use case: In the top we show a description of the task, the model chosen,

and the training hyperparameters. The 6 figures are divided in two columns, each of the columns

represent different random base instances: left shows index 3 in the dataset, and right shows index

52 in the dataset.

Instance index = 3

Proximity Threshold = 0.1

Instance index = 52

Proximity Threshold = 0.1

Instance index = 3

Proximity Threshold = 0.5

Instance index = 52

Proximity Threshold = 0.5

Instance index = 3

Proximity Threshold = 1

Instance index = 52

Proximity Threshold = 1

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

Case: Credit Predicton
Task: Classification

Framework: Tensorflow

Number of inputs: 20

Number of outputs: 1

Training Instances: 1,000

Architecture:

Layer 1: Dense, 300 units, ReLu

Layer 2: Dropout 0.2 Rate

Layer 3: Dense, 300 units, ReLu

Layer 2: Dropout 0.2 Rate

Layer 5: Dense, 20 units, ReLu

Layer 6: Dense, 1 unit, Sigmoid

Training:

Epochs: 200

Learning Rate: 0.00001

Optimizer: Adam

Loss: Binary Cross Entropy

10

Fig. 5. Diabetes prediction use case: In the top we show a description of the task, the model

chosen, and the training hyperparameters. The 6 figures are divided in two columns, each of the

columns represent different random base instances: left shows index 19 in the dataset, and right

shows index 32 in the dataset.

Base Instance

Case: Diabetes Predicton
Task: Classification

Framework: Pytorch

Number of inputs: 8

Number of outputs: 1

Training Instances: 600

Architecture:

Layer 1: Dense, 64 units, GELU

Layer 2: Dropout 0.1 Rate

Layer 3: Dense, 128 units, Tanh

Layer 4: Dense, 1 unit, Sigmoid

Training:

Epochs: 200

Learning Rate: 0.0001

Optimizer: Adam

Loss: Binary Cross Entropy

Batch Size: 10

Instance index = 19

Proximity Threshold = 0.1

Instance index = 32

Proximity Threshold = 0.1

Instance index = 19

Proximity Threshold = 0.5

Instance index = 32

Proximity Threshold = 0.5

Instance index = 19

Proximity Threshold = 1

Instance index = 32

Proximity Threshold = 1

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

11

Fig. 6. Credit prediction use case: In the top we show a description of the task, the model chosen,

and the training hyperparameters. The 6 figures are divided in two columns, each of the columns

represent one of the two output dimensions, both columns are showing the same random base

instance, which corresponds to index 7 in the dataset.

Base Instance

Case: Temperature Predicton
Task: Regression

Framework: Tensorflow

Number of inputs: 22

Number of outputs: 2

Training Instances: 7,587

Architecture:

Layer 1: Dense, 300 units, ReLu

Layer 2: Dropout 0.2 Rate

Layer 3: Dense, 300 units, SELU

Layer 4: Dense, 20 units, Swish

Layer 5: Dense, 2 unit, Sigmoid

Training:

Epochs: 100

Learning Rate: 0.00001

Optimizer: Adam

Loss: Mean Squared Error

Batch Size: 10

Instance index = 7

Output: 1

Proximity Threshold = 0.1

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

Instance index = 7

Output: 2

Proximity Threshold = 0.1

Instance index = 7

Output: 1

Proximity Threshold = 0.5

Instance index = 7

Output: 2

Proximity Threshold = 0.5

Instance index = 7

Output: 1

Proximity Threshold = 1

Instance index = 7

Output: 2

Proximity Threshold = 1

12

5 Discussion

The scatter of points shown in the plots of Figs. 4-6 exhibit a tangential behavior to the

reference diagonal line where the predictions of both the neural network and the linear

function match. The tangential pattern is more prominent where the Euclidean distance

is smaller. This implies that for instances that around the vicinity of the base instance

chosen, the front-propagation algorithm is able to extract a linear function that approx-

imates accurately the behavior of the neural network. This trend was also found in all

the other cases we studied. Noticeable, the scatter of points converges to the reference

diagonal when we use smaller values of the proximity threshold.

To summarize, the obtention of a linear function approximation of the model is par-

ticularly useful for three main reasons:

• If we multiply the input values of the base instance times the corresponding
coefficients of the linear function approximation the resulting terms could be

seen as the contributions of each input dimension towards the generation of

the output. These contributions are particularly interesting to detect potential

biases towards certain input dimensions when they exceed a given threshold,

or to identify the variables that are mostly influencing the model’s outcome

when aggregating the contributions across an entire dataset.

• This linear function serves as an explanation of the underlying reasoning of

the model. Indeed, in certain use cases one can find what are the “common”

reasonings of the network by clustering the coefficients of these linear func-

tions, which then can be associated to certain operational modes of the net-

work. Furthermore, if those “normal” modes are quantified, one could also

develop a simple algorithm that classifies when the network’s reasoning is
becoming too different than those expected, and therefore it could be seen as

an outlier reasoning. This is particularly useful in safety critical applications,

where the user could decrease the trust in the outputs generated if those have

outlier reasonings associated, or in other words if the linear function did not

follow one of the common reasoning modes.

Other eXplainable AI algorithms rely on making variations on the input dimensions

and subsequently execute the model to estimate the influence of each input dimension

in the output. These perturbations-based techniques have a variety of drawbacks:

• The results are different in every execution, because they depend on a random

component as a result of the perturbations.

• The linear functions obtained are not the true reasoning followed by the network

but an approximation of this.

• The computational cost is very high due to the multiple inferences required and

they can easily saturate the resources if the model has many input dimensions, or
simply make the problem unsolvable.

13

On the other hand, the front-propagation algorithm has the following benefits:

• The result is the same no matter the execution because it does not depend on any

random component. The solution to this problem is deterministic.

• The linear function obtained is the underlying true reasoning of the network: Not

only because this is a valid approximation of the network for points nearby the

base instance, but also because the output obtained with this function equals the

output of the network when evaluating the base instance (which does not occur in

the mentioned perturbation-based methods).

• The computational cost is extremely small compared to the perturbation-based

methods because it only requires one forward pass in the network to obtain the

result, whereas the aforementioned methods may require thousands, if not more,

of inferences.

6 Conclusion

We introduced the front-propagation algorithm, which aims to extract the linear func-

tion approximations to explain the inner logic of a trained neural network. The main

advantage of this algorithm compared to other explainable AI techniques is the require-

ment to execute just a single forward pass of the network to obtain such linear function.

Other methods often require multiple inference executions and do not always provide

the same solution. In essence, the front-propagation algorithm provides a significant

improvement in computational cost compared to the state of the art, because its time

complexity does not depend on multiple runs of the network.

We packaged a Python version of this algorithm in a software called front-prop,

which is publicly available in GitHub. We also tested front-prop in three different

uses cases and demonstrated with visual figures the ability to obtain reliable linear func-

tion approximations of the models.

We	hope	this	offers	researchers	and	practitioners	a	fast	method	to	set	the	path-

way	for	real-time	explanations	of	neural	network	models.

Code Availability

The code of front-prop is publicly available in GitHub [11].

References

1. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks, 61, 85-

117 (2015).

2. Xu, F., et al.: Explainable AI: A brief survey on history, research areas, approaches and

challenges. In: Natural Language Processing and Chinese Computing: 8th CCF International

14

Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings, Part II

8 (pp. 563-574). Springer International Publishing (2019).

3. Lundstrom, D. D., et al.: A rigorous study of integrated gradients method and extensions to

internal neuron attributions. In: International Conference on Machine Learning (pp. 14485-

14508). PMLR (2022).

4. Holzinger, A., et al.: Explainable AI methods-a brief overview. In: International workshop

on extending explainable AI beyond deep models and classifiers (pp. 13-38). Springer,

Cham (2022).

5. Borys, K., et al.: Explainable AI in Medical Imaging: An overview for clinical practitioners–

Saliency-based XAI approaches. European journal of radiology, 110787 (2023).

6. Quach, L. D., et al.: Using gradient-weighted class activation mapping to explain deep learn-

ing models on agricultural dataset. IEEE Access. (2023).

7. Montavon, G., et al.: Layer-wise relevance propagation: an overview. Explainable AI: in-

terpreting, explaining and visualizing deep learning, 193-209 (2019).

8. Winter, E. The shapley value. Handbook of game theory with economic applications, 3,

2025-2054 (2002).

9. Goh, G. S., et al.: Understanding integrated gradients with smoothtaylor for deep neural

network attribution. In: 2020 25th International Conference on Pattern Recognition

(ICPR) (pp. 4949-4956). IEEE (2021).

10. Kumarakulasinghe, N. B., et al.: Evaluating local interpretable model-agnostic explanations

on clinical machine learning classification models. In 2020 IEEE 33rd International Sym-

posium on Computer-Based Medical Systems (CBMS) (pp. 7-12). IEEE (2020).

11. Viaña, J.: front-prop: Front propagation algorithm to obtain linear function approximations

of neural networks. (2022). https://github.com/JavierVianaAi/front-prop

