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Abstract. This paper introduces the front-propagation algorithm, a novel eX-

plainable AI (XAI) technique designed to elucidate the decision-making logic of 

deep neural networks. Unlike other popular explainability algorithms such as In-

tegrated Gradients or Shapley Values, the proposed algorithm is able to extract 

an accurate and consistent linear function explanation of the network in a single 

forward pass of the trained model. This nuance sets apart the time complexity of 

the front-propagation as it could be running real-time and in parallel with de-
ployed models. We packaged this algorithm in a software called front-prop 

and we demonstrate its efficacy in providing accurate linear functions with three 

different neural network architectures trained on publicly available benchmark 

datasets.  
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1 Introduction 

Neural networks have demonstrated remarkable performance across a myriad of tasks, 

ranging from image recognition to natural language processing [1]. However, the in-

herent complexity of these models often renders their decision-making processes 

opaque and difficult to interpret, hindering their deployment in critical domains where 

transparency and trustworthiness are paramount. In recent years, the pursuit of eXplain-

able AI (XAI) techniques has emerged as a crucial endeavor to demystify the inner 

workings of such black-box models [2]. 

Among the plethora of XAI methodologies, Integrated Gradients has garnered sig-

nificant attention for its effectiveness in attributing feature importance to model predic-

tions [3]. By systematically perturbing input features and integrating the gradients of 

model outputs with respect to these perturbations, Integrated Gradients provides in-

sightful explanations for individual predictions, thereby enhancing model interpretabil-

ity. 

In this paper, we delve into the realm of explainable AI tools, particularly focusing 

on a technique akin to Integrated Gradients, to facilitate the extraction of linear function 

approximations from neural networks. The rationale behind this endeavor lies in the 
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interpretability and simplicity afforded by linear models [4], which stand in stark con-

trast to the complexity of neural networks. By distilling the essence of neural network 

behaviors into linear approximations, we aim to bridge the gap between model com-

plexity and interpretability. 

This paper contributes to the burgeoning field of XAI by presenting a novel meth-

odology tailored to extract linear function approximations from neural networks, 

thereby shedding light on their decision-making processes. We showcase the efficacy 

of our approach through empirical evaluations on benchmark datasets, demonstrating 

the utility of linear approximations in enhancing model interpretability without sacri-

ficing performance. 

In addition to Integrated Gradients there are currently several other ways to provide 

explanations for the predictions of complex machine learning models. To list some: 

 

• Saliency Maps [5], which highlight the most relevant regions of the input data that 

contribute to the model's prediction. They are computed by taking the gradient of 

the output with respect to the input, effectively identifying the features that have 

the greatest impact on the model's decision. 

• Gradient-weighted Class Activation Mapping (Grad-CAM) [6], which generates 

class-discriminative visual explanations by computing the gradients of the target 

class score with respect to the feature maps of a convolutional neural network. 
This technique highlights the regions in the input image that are most relevant to 

the predicted class. 

• Layer-wise Relevance Propagation (LRP) [7], which decomposes the prediction 

of a neural network by attributing relevance scores to each neuron in the network's 

hidden layers. These relevance scores indicate the contribution of each neuron to 

the final prediction, thereby providing insights into the model's decision-making 

process. 

• Shapley Values [8], an idea that originates from cooperative game theory and aim 

to fairly distribute the contribution of each feature to the model's output. In the 

context of explainable AI, Shapley values quantify the marginal contribution of 

each feature to the prediction, providing a globally consistent explanation for in-
dividual predictions. 

• SmoothGrad [9], which improves the interpretability of gradient-based attribution 

methods by reducing noise in the gradient signal. It computes the average gradient 

across multiple noisy samples of the input data, resulting in smoother and more 

reliable explanations for the model's predictions. 

• Local Interpretable Model-agnostic Explanations (LIME) [10], which generates 

local explanations for individual predictions by fitting an interpretable model 

(e.g., linear regression) to perturbed instances of the input data. By approximating 

the model's behavior in the vicinity of a particular prediction, LIME provides in-

sights into the decision-making process of complex machine learning models. 

 

These techniques form a diverse toolbox of explainable AI methods that facilitate 

the interpretation of complex machine learning models. Which depending on the spe-

cific characteristics of the model and the interpretability requirements of the 
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application, researchers and practitioners can choose the most suitable technique for 

their needs. 

2 Methodology 

The proposed front-propagation algorithm aims to extract a linear function approxi-

mation of the behavior of a neural network in the vicinity of a given instance, denoted 

as the base instance. As usual with other distillation techniques, the goal of this algo-

rithm is to generate a simple function that can replace the model while still performing 

well for other datapoints that are “near” the base instance. The key difference with other 

methods, however, is the low computational cost that is required by the proposed front-

propagation algorithm to obtain such function.  

This paper explains the theoretical framework that underlies the aforementioned al-

gorithm and discusses its potential benefits for the AI community. Indeed, the infor-

mation of the linear function approximation is very relevant in various applications, not 

only to quantify the contributions of each of the input dimensions, but also to determine 

if the network is following a biased or an outlier reasoning, to supervise the model’s 

behavior, or simply to extract relevant knowledge of the problem. 

To describe the inner workings of the algorithm, we first consider a simple feed-

forward neural network with 𝐻 hidden layers that performs a transformation from a 𝑁!"-dimensional input space 𝐱 = {𝑥#, 𝑥$, … , 𝑥%!"} into a 𝑁&'(-dimensional output 

space 𝐲+ = {𝑦+#, 𝑦+#, … , 𝑦+%#$%}, as depicted in Fig.1. If 𝑁&'( was 1, then we would only 

need to extract a single linear function approximation of the network. However, in a 

generic network, we can expect to look for 𝑁&'( linear functions, each of them associ-

ated to each of the output dimensions. We start from a specific base input instance 𝐱𝐢, 
and the associated output of the network 𝐲+𝒊. In order to obtain the coefficients of these 

linear approximations, we will traverse all the layers sequentially in a forward-pass 

from the input layer to the output layer. Indeed, at every layer we will be calculating 

the linear function approximations that replace the network till that point. In other 

words, if a given hidden layer, which we denote by 𝑙+, has 𝑁+ neurons, we should be 

able to obtain 𝑁+ linear functions. The information of these linear functions at 𝑙+ can 

simply be stored in a matrix of dimension 𝑁+ ×𝑁!", which we denote by 𝐌𝐡, where 

the entries of the matrix represent the coefficients that multiply each of the input di-

mensions. Therefore, the goal at every layer is to get these matrix coefficients. How-

ever, to do so we first need to compute the gradient of the layer’s outputs with respect 

to the layer’s inputs. If we have a fully connected dense layer, this is simply the deriv-

ative of the layer’s activation functions evaluated at the base instance.  
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Fig. 1. Generic feed-forward neural network architecture. Difference in the flow of data in infer-

ence, back-propagation, and front-propagation. 

 

At this point, one can start seeing the similarities between the proposed algorithm 

and the back-propagation algorithm: 

 

• The back-propagation algorithm calculates the gradient of the loss function 

with respect to the weights and biases, and then corrects those parameters 

to optimize the network. In this algorithm the information flows from the 

output layer towards the input layer. 

• The proposed front-propagation algorithm on the other hand calculates the 
gradient of the outputs with respect to the inputs, which then serve as an 

explanation of the network’s reasoning. In this algorithm the information 

flows from the input layer towards the output layer. 

 

Both the back and front-propagation algorithms are triggered after the network has 

made an inference. In the first case to correct the network’s parameters and in the sec-

ond to understand the reasoning of the network. Both algorithms share the same time 

complexity, and only require to traverse once the network to obtain the desired results, 

which makes the front-propagation very attractive for fast computations. 

The name front-propagation was inspired on the similarities with the back-propaga-

tion algorithm and the fact that this algorithm traverses the network in the opposite 

direction. 

 

3 Algorithm 

Let us consider a generic 𝛾-th neuron of an arbitrary intermediate layer 𝑙+, as shown in 

Fig. 2. The value passed to this neuron is the sum of the product between the output 

vector of layer	𝑙+-#,	denoted 𝐭(𝐡-𝟏), and the corresponding weight vector 𝐰𝐡,𝛄, plus 

⋮

⋮⋮ ⋮
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the bias 𝑏+,3. The output of the studied neuron, denoted by 𝑡(+)3, is then obtained by 

mapping this value with the activation function 𝑔+,3. In formulation, 𝑡(+)3 =
𝑔+,3 <𝑏+,3 + ∑ 𝑤+,3,4 ∙%&

45# 𝑡(+-#)'A. This value 𝑡(+)3 is the 𝛾-th entry of the vector 𝐭(𝐡), 
which denotes the output vector of layer 𝑙+. 

 
Fig. 2. Transformation of data carried out inside a generic neuron of the network. 

 

We start with the neurons of the network’s first hidden layer, 𝑙6. For a given 𝛼-th neu-

ron of this layer 𝑙6, the output 𝑡(6)7 can be expressed as  𝑔6,7<𝑏6,7 +∑ 𝑤6,7,4 ∙%!"
45# 𝑥4A.  

Instead of substituting 𝑥4 with the corresponding values of the instance studied, we 

preserve 𝑥4 as a placeholder variable that identifies the 𝑗-th input dimension. We remind 

the reader that the goal is to find the linear dependencies that relate the input and the 

output spaces, therefore, we do not want to substitute the values of 𝐱. 

We denote the argument that is passed to the activation function by 𝑠(𝐱), which for the 

case of the neuron studied is 𝑠6,7(𝐱) = 𝑏6,7 +∑ 𝑤6,7,4 ∙%!"
45# 𝑥4. At this point, the term 

𝑠6,7(𝐱) is in fact a linear combination of the input dimensions, and the activation func-

tion is the one responsible for introducing the non-linearity in the obtention of 𝑡(6)7. In 

order to find the linear dependencies between 𝑡(6)7 and the input dimensions 𝑥4, we 

first need to get the derivative of the activation function at the base instance. This is of 

course the tangent line that approximates the activation function at the base instance. 

We denoted our base instance by  𝐱𝐢, thus, the representation of this point instance in 

the dimensions of the activation function is identified by the coordinates 

G𝑠6,7(𝐱𝐢), 𝑡(6)7(𝐱𝐢)H, as shown in Fig. 3. 
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Fig. 3. Linear function approximation of the activation function around the base instance. 

 

The tangent line of the activation function 𝑔6,7 at the base instance can be expressed 

as 

𝑞6,7,!(𝑠) = 𝑚6,7,! ∙ 𝑠 + 𝑛6,7,! . (1) 

where  𝑞6,7,! <𝑠6,7(𝐱𝐢)A = 𝑔6,7 <𝑠6,7(𝐱𝐢)A and 𝑞6,7,! <𝑠6,7(𝐱𝐢)A = 𝑚6,7,! ∙ 𝑠6,7(𝐱𝐢) +
𝑛6,7,!. The calculation of the slope of this linear function is 𝑚6,7,! and is calculated 

simply by applying the derivative of the activation function and evaluating it at the base 

instance, i.e.,   

𝑚6,7,! = 𝑑𝑔6,7(𝑠)𝑑𝑠 N
8(,*(𝐱𝐢)

. (2) 

The calculation of the independent term of the linear function, 𝑛6,7,!, is the obtained by 

𝑛6,7,! = 𝑞6,7,! <𝑠6,7(𝐱𝐢)A −𝑚6,7,! ∙ 𝑠6,7(𝐱𝐢). (3) 

Once the linear function approximation of the activation function is fully defined, we 

then plug the linear function coefficients of 𝑠6,7(𝐱) inside	𝑞6,7,!(𝑠). The result is a lin-

ear combination of linear functions, which can also be expressed as a linear function, 

which we denote by 𝑟6,7,!(𝐱),  
𝑟6,7,!(𝐱) = 𝑞6,7,! <𝑠6,7(𝐱)A, (4) 

this is a new linear function that relates the output of the neuron	𝛼 of layer	𝐻 with the 

input dimensions around the vicinity of 𝐱𝐢. We then store the coefficients of 𝑟6,7,!(𝐱) 
in a row of the matrix 𝐌𝐇 and move on to the next neuron of layer 𝐻 repeating the same 

process. 

In the next layer 𝐻 − 1, we will be repeating a similar procedure. We start consider-

ing a neuron 𝛽 of this layer, but instead of using 𝑥4 as the placeholder argument of 

𝑠6;#,<(𝐱), we plug the corresponding 𝑟6,4,!(𝐱), which we can retrieved from the matrix 

𝐌𝐇, so that 

𝑠6;#,<(𝐱) = 𝑏6;#,< +S𝑤6;#,<,4 ∙
%(

45#

𝑟6,4,!(𝐱). (5) 
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However, the linear functions 𝑟6,4,!(𝐱) contain inside the placeholder variables of 𝑥4, 
which again we should not substitute by the associated values of the base instance. 

Instead, we simplify the expression 𝑠6;#,<(𝐱)	by multiplying the 𝑤6;#,<,4 weights 

times each of the coefficients of the 𝑟6,4,!(𝐱) functions, which will result in a simple 

linear function with the 𝑥4 variables. Subsequently, we can repeat the exact same pro-

cedure that was performed with the activation function of neuron 𝛼. 

Following this same strategy in every neuron of the network and regrouping the pa-

rameters we can obtain the linear output function of each neuron, and then storing the 

associated coefficients in the corresponding 𝐌 matrix. Once we arrive at the output 

layer of the neural network and we have finished filling the entries of 𝐌𝟏, which has a 

dimension of 𝑁# ×𝑁!", we would have effectively found the 𝑁# linear functions, of all 

the output dimensions, that approximate the behavior of the network around the base 

instance chosen. 

 

Time Complexity 

 

This algorithm provides a local explanation for a given instance; therefore, it should be 

executed once for every datapoint studied. Unlike other post-hoc explainability algo-

rithms available, the front-propagation does not require making any perturbations in the 

input to estimate a linear function approximation of the network. These alternative tech-

niques require many executions of the entire network, which often make them compu-

tationally unattractive for real time explainability requirements. On the other hand, the 

front-propagation requires a single execution, thus its time complexity is the same as a 

single inference, 𝑂(∑ 𝑁+)6
+5# . 

4 Results 

We developed and packaged front-prop, an optimized version of the front-propa-

gation algorithm, which is publicly available on GitHub, [11]. The current version of 

the code is able to generate real-time linear function explanations of sequential feed 

forward models developed in Tensorflow and Pytorch. This version can only tackle 

models that include dense layers, dropout layers, softmax layers, batch normalization 

layers, and a variety of popular activation functions (ELU, ReLu, SELU, GELU, sig-

moid, tanh, swish, softsign, exponential, hard sigmoid, softplus). Further details on how 

to download and execute front-prop along with a model can be found on the de-

scriptions of the code hosted in GitHub. 
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We considered three different use cases to test the package developed with the front-

propagation algorithm: 

 

• Credit granting (classification task): Model trained in Tensorflow, and data obtained 

from the University of California Irvine Machine Learning Repository. 

• Diabetes prediction (classification task): Model trained in Pytorch, and data ob-

tained from the National Institute of Diabetes and Digestive and Kidney Diseases. 

• Temperature prediction (regression task): Model trained in Tensorflow, and data 

obtained from the University of California Irvine Machine Learning Repository. 

 

In Figs. 4-6 we show the results of applying the front-propagation algorithm after 

having a well-performing trained neural network model in each of the three use cases. 

For each of the plots shown in the figures, we applied the following process: First, we 

considered a base instance. Second, we obtained the associated output generated by the 

neural network. Then, we applied the front-propagation algorithm to this base instance 

to obtain a linear function approximation of the model. Logically, if we evaluate the 

input of the base instance using this linear function approximation, the result should 

match the output obtained with the neural network in the first place. At this point we 

want to determine whether the linear function approximation obtained is reliable or not. 

To do so, we want to study several points that are nearby the base instance and evaluate 

these both with the model and with the linear function. If the results of these two eval-

uations match, we could then say that the linear function is indeed a good approxima-

tion. To generate the points in the surroundings we added random gaussian noise to 

each of the input dimensions of the base instance. However, we used a limit on the 

allowed maximum deviation, which we identify in the code with the “proximity thresh-

old” variable (which can range from 0 to 1). The code developed allows the user to 

decide how many of these exploration points wants to consider for the plots, in all the 

figures we set this variable to 1,000. To summarize, each point of the plots represents 

a given input instance, near the base instance, that was evaluated twice: first using the 

trained neural network, and then using the linear function approximation that was found 

by the front-propagation algorithm. The horizontal axis represents the output of the 

trained neural network, and the vertical axis represents the output of the linear function 

approximation found by front-prop. 

The points were colored using the Euclidean distance in the normalized input space 

with respect to the base instance. In each figure we show three rows: the first is associ-

ated to a proximity threshold of 0.1, the second with a proximity threshold of 0.5, and 

the bottom row represents the case where this threshold is 1, the maximum possible 

value. 
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Fig. 4. Credit prediction use case: In the top we show a description of the task, the model chosen, 

and the training hyperparameters. The 6 figures are divided in two columns, each of the columns 

represent different random base instances: left shows index 3 in the dataset, and right shows index 

52 in the dataset. 

 

 

Instance index = 3

Proximity Threshold = 0.1

Instance index = 52

Proximity Threshold = 0.1

Instance index = 3

Proximity Threshold = 0.5

Instance index = 52

Proximity Threshold = 0.5

Instance index = 3

Proximity Threshold = 1

Instance index = 52

Proximity Threshold = 1

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

Case: Credit Predicton
Task: Classification

Framework: Tensorflow

Number of inputs: 20

Number of outputs: 1

Training Instances: 1,000

Architecture:

Layer 1: Dense, 300 units, ReLu

Layer 2: Dropout 0.2 Rate

Layer 3: Dense, 300 units, ReLu

Layer 2: Dropout 0.2 Rate

Layer 5: Dense, 20 units, ReLu

Layer 6: Dense, 1 unit, Sigmoid

Training:

Epochs: 200

Learning  Rate: 0.00001

Optimizer: Adam

Loss: Binary Cross Entropy
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Fig. 5. Diabetes prediction use case: In the top we show a description of the task, the model 

chosen, and the training hyperparameters. The 6 figures are divided in two columns, each of the 

columns represent different random base instances: left shows index 19 in the dataset, and right 

shows index 32 in the dataset. 

 

 

Base Instance

Case: Diabetes Predicton
Task: Classification

Framework: Pytorch

Number of inputs: 8

Number of outputs: 1

Training Instances: 600

Architecture:

Layer 1: Dense, 64 units, GELU

Layer 2: Dropout 0.1 Rate

Layer 3: Dense, 128 units, Tanh

Layer 4: Dense, 1 unit, Sigmoid

Training:

Epochs: 200

Learning  Rate: 0.0001

Optimizer: Adam

Loss: Binary Cross Entropy

Batch Size: 10

Instance index = 19

Proximity Threshold = 0.1

Instance index = 32

Proximity Threshold = 0.1

Instance index = 19

Proximity Threshold = 0.5
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Proximity Threshold = 0.5

Instance index = 19

Proximity Threshold = 1

Instance index = 32

Proximity Threshold = 1

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance
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Fig. 6. Credit prediction use case: In the top we show a description of the task, the model chosen, 

and the training hyperparameters. The 6 figures are divided in two columns, each of the columns 

represent one of the two output dimensions, both columns are showing the same random base 

instance, which corresponds to index 7 in the dataset. 

 

 

Base Instance

Case: Temperature Predicton
Task: Regression

Framework: Tensorflow

Number of inputs: 22

Number of outputs: 2

Training Instances: 7,587

Architecture:

Layer 1: Dense, 300 units, ReLu

Layer 2: Dropout 0.2 Rate

Layer 3: Dense, 300 units, SELU

Layer 4: Dense, 20 units, Swish

Layer 5: Dense, 2 unit, Sigmoid

Training:

Epochs: 100

Learning  Rate: 0.00001

Optimizer: Adam

Loss: Mean Squared Error

Batch Size: 10

Instance index = 7

Output: 1

Proximity Threshold = 0.1

Base Instance

Base Instance

Base Instance

Base Instance

Base Instance

Instance index = 7

Output: 2

Proximity Threshold = 0.1

Instance index = 7

Output: 1

Proximity Threshold = 0.5

Instance index = 7

Output: 2

Proximity Threshold = 0.5

Instance index = 7

Output: 1

Proximity Threshold = 1

Instance index = 7

Output: 2

Proximity Threshold = 1
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5 Discussion 

The scatter of points shown in the plots of Figs. 4-6 exhibit a tangential behavior to the 

reference diagonal line where the predictions of both the neural network and the linear 

function match. The tangential pattern is more prominent where the Euclidean distance 

is smaller. This implies that for instances that around the vicinity of the base instance 

chosen, the front-propagation algorithm is able to extract a linear function that approx-

imates accurately the behavior of the neural network. This trend was also found in all 

the other cases we studied. Noticeable, the scatter of points converges to the reference 

diagonal when we use smaller values of the proximity threshold.  

To summarize, the obtention of a linear function approximation of the model is par-

ticularly useful for three main reasons: 

 

• If we multiply the input values of the base instance times the corresponding 
coefficients of the linear function approximation the resulting terms could be 

seen as the contributions of each input dimension towards the generation of 

the output. These contributions are particularly interesting to detect potential 

biases towards certain input dimensions when they exceed a given threshold, 

or to identify the variables that are mostly influencing the model’s outcome 

when aggregating the contributions across an entire dataset. 

• This linear function serves as an explanation of the underlying reasoning of 

the model. Indeed, in certain use cases one can find what are the “common” 

reasonings of the network by clustering the coefficients of these linear func-

tions, which then can be associated to certain operational modes of the net-

work. Furthermore, if those “normal” modes are quantified, one could also 

develop a simple algorithm that classifies when the network’s reasoning is 
becoming too different than those expected, and therefore it could be seen as 

an outlier reasoning. This is particularly useful in safety critical applications, 

where the user could decrease the trust in the outputs generated if those have 

outlier reasonings associated, or in other words if the linear function did not 

follow one of the common reasoning modes. 

 

Other eXplainable AI algorithms rely on making variations on the input dimensions 

and subsequently execute the model to estimate the influence of each input dimension 

in the output. These perturbations-based techniques have a variety of drawbacks:  

 

• The results are different in every execution, because they depend on a random 

component as a result of the perturbations. 

• The linear functions obtained are not the true reasoning followed by the network 

but an approximation of this. 

• The computational cost is very high due to the multiple inferences required and 

they can easily saturate the resources if the model has many input dimensions, or 
simply make the problem unsolvable. 
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On the other hand, the front-propagation algorithm has the following benefits: 

 

• The result is the same no matter the execution because it does not depend on any 

random component. The solution to this problem is deterministic. 

• The linear function obtained is the underlying true reasoning of the network: Not 

only because this is a valid approximation of the network for points nearby the 

base instance, but also because the output obtained with this function equals the 

output of the network when evaluating the base instance (which does not occur in 

the mentioned perturbation-based methods).  

• The computational cost is extremely small compared to the perturbation-based 

methods because it only requires one forward pass in the network to obtain the 

result, whereas the aforementioned methods may require thousands, if not more, 

of inferences. 

 

6 Conclusion 

We introduced the front-propagation algorithm, which aims to extract the linear func-

tion approximations to explain the inner logic of a trained neural network. The main 

advantage of this algorithm compared to other explainable AI techniques is the require-

ment to execute just a single forward pass of the network to obtain such linear function. 

Other methods often require multiple inference executions and do not always provide 

the same solution. In essence, the front-propagation algorithm provides a significant 

improvement in computational cost compared to the state of the art, because its time 

complexity does not depend on multiple runs of the network.  

We packaged a Python version of this algorithm in a software called front-prop, 

which is publicly available in GitHub. We also tested front-prop in three different 

uses cases and demonstrated with visual figures the ability to obtain reliable linear func-

tion approximations of the models. 

We	hope	this	offers	researchers	and	practitioners	a	fast	method	to	set	the	path-

way	for	real-time	explanations	of	neural	network	models. 

 

 

Code Availability 

 

The code of front-prop is publicly available in GitHub [11]. 
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