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Abstract. We propose a deep learning algorithm that breaks with the paradigm
of weights and activation functions, CEFYDRA, a network of cluster-first
fuzzy-based regression algorithms. In this paper, we cover the generalization of
CEFYDRA to multilayered deep architectures. First, we provide the three laws
that make this generalization possible: Displacement, Substitution and Compo-
sition. Then, we obtain the update formulas for the parameters of deep hidden
layers. Finally, we show the pseudocode for prediction and update. We also
briefly mention the reasons to believe that this algorithm, named CEFYDRA, is
explainable and has the ability for plastic reorganization.
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1 Introduction

In the last year, multiple explainable neural network algorithms were created, e.g., [1-
4]. Some of which have proved to be very successful in a variety of fields, such as the
discovery of exoplanets [5] or industrial automation [6]. In fact, based on the number
of publications and patents published over the last decade, it can be said that the neu-
ral networks have captured the attention of most of the research carried out in com-
puter science. Despite the advances made, a new core methodology different from the
classic mechanism of weights and activation functions is rarely proposed [7-8]. To a
certain extent this implies a limitation in the type of problems that we can tackle.

The research on alternative and novel basic neural architectures should not de-
crease. Even so, the main techniques to improve the performance in a problem solved
with deep learning continue to be the iterative (trial and error) modification of the
number of layers, units, or the shape of the activation functions. Meanwhile, the ave-
nue of varying the inner functioning of the neural unit itself remains partially unex-
ploited.



2 On the Learning Formulas for the Hidden Layer

One of the goals of this research is to provide an alternative to the standard of
weights, biases, and activation functions of a regular neural network. We proposed a
model called CEFYDRA, an architecture whose units are based on the algorithms
covered in [9-13]. At every unit of the network, the inputs are grouped in fuzzy clus-
ters (whose degree of membership is defined through Cauchy membership functions),
and mapped with multidimensional logistic functions. The output of a unit is obtained
by merging the predictions of all the clusters using a Takagi-Sugeno-Kang approach.
All the parameters are optimized following a gradient descent learning.

In this section we focus on how to update the parameters of deep hidden layers of a
CEFYDRA.

In our formulation, the upper left index in parenthesis represents the layer refer-
ence (0 for output, 1 for the first hidden starting from the right), and the bottom index
represents the unit within that layer. We use X;, y;, and §; to denote the i*" input, out-
put, and predicted output, respectively. The symbols t and w represent the output and
a generic parameter of a given unit. Finally, indexes k and j refer to the cluster and
input dimension within the unit. The membership functions are obtained from Cauchy
distributions,
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In [7-8], the functions for the approximation of each cluster are linear, however, we
want to constrain the output of each unit between 0 and 1. Thus, we use logistic func-
tions instead, for a generic unit k; within layer A,
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With that set up, we start from the premise that between any output of a unit from
the output layer and any other output of a unit from the first hidden layer exists a line-
ar proportionality,
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where K is a parameter that depends on the connection between these two units. It can
be demonstrated that
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Due to this decoupling in the consecutive outputs, we can expect a generalized

formula that relates any two non-consecutive outputs (from any two layers) of the
type
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We use the upper left index to distlngulsh between the hidden layers (Fig. 1). For a
given layer A, unit h;, the output variable is Pt .
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Fig. 1. Representation of a CEFYDRA with several hidden layers and an output layer of di-
mension L. The two units highlighted referred to equation (1).
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There are three laws that we can derive from (1):

Displacement Law. We can consider the equation (1) between every two consecu-
tive layers. If we use the hidden layers 2 and 1, we get
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To obtain [(fz)(hll)] ¢(x;), we treat (1)th1 as the output 9, we used in (1) and @t; in-
stead of the input t;. Similarly, we also adapt the parameters of [(hz)(hl)] ¢(x;) to those of
2 1

the ht" unit of the first hidden layer. Equation (6) is the particular form of the Dis-
placement Law between the unit h; of layer 1 and the unit h, of layer 2 (Fig. 2).

()



\( / </
S NGNS
NN N5

(i)

. e % @ @
: Q C ‘AQO
NN AN

BT\
AR 0%‘%‘\%@

N

Fig. 2. Highlight of the two units within the CEFYDRA that refer to equation (6), i.e., the Dis-
placement Law in its particular form between hidden layers 1 and 2.

We now translate the particular form of the Displacement Law (6) to its general
form by considering the hidden layers A and, 1 — 1. We focus on the a‘"* output of
layer A (Mt,,) and the B output of layer 2 — 1 (*~Vty) as show in Fig. 3.
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the Displacement Law in its general form between hidden layers A — 1 and A.

The resulting general form is
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Substitution Law. This Law comes from the application of the chain rule in the
derivatives of (1) to consider any other parameter of the system,
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If we consider the parameter p = h Wk ; for the layer 2 in formula (10), then
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In the general form, we can take the general expression (8) obtained for the Dis-
placement Law and consider any layer m and any unit y within the layer m,
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Composition Law. The Composition Law is achieved from the combination of
both the Displacement and Substitution Laws. For the particular cases (6) and (10),
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Equation (13) is certainly interesting, as it shows that ng( x) is not only dependent
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the information of the unit h, of the second hidden layer and the information of the
unit [ of the output layer) but it is also dependent on [(hzz)(]jl)](j)(xi), i.e., the information

of the unit h; of the first hidden layer. This might seem confusing, since h, is not
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h, could be any unit of the first hidden layer. This comes from the fact that the system

is overdetermined due to the fully connected network. In other words, there are many

. In fact, there is no specification for h,, therefore

paths that connect both h, and [, and they all provide a different result of gg‘(::’)
hz kj
Thus, we suggest that 5 Ezﬁ(";)] should be calculated by averaging the value obtained
2
from all the different paths (Fig. 4),
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Fig. 4. Graphical representation of all the possible paths in the calculation of éﬁ(x‘) The term
0, Wij

e;; represents the error of each output unit y; — 9,(x;).

To calculate the general form of (13), we can now study the expression of g(x’)

h3WkJ
We start from the expression of the particular Composition Law, and we apply the

Substitution Law, i.e., instead of deriving with respect to (hzz)wk j» we derive with re-

spect to (h)wk j» where 3 is the third hidden layer and h3 is a generic hidden neuron,

again, the factors (0)¢(x,) and (l)qb(xl) do not depend on h Wk j or (h)Wk j» thus
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now we consuier the Displacement Law for layers 3 and 2, let us call (3)th3 the in-
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and we combine it with the result obtained in (15),
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As it happened in (13), this particular case of the Composition Law (17), which de-
fines the learning of the third layer’s parameters, also depends on the path and the
connections chosen in layers 1 and 2. Hence we use the average of all the possible
paths as shown in Fig. 5,

H, H;

09 (xi) _ Z Z {{(3)(2)] $(x,)- [(2)(1)] bx,) [(1)(0)] S0 (gzgfjn), (18)
J

(3) T H,-H
0, Wkj R e e




7

5 ® &z
aP(xi) _ 0t (xi) 1 Z

®) - 3)
6h3ij 6h3wk,- HZ

Hy
{[i)i)] $(x:) Hi1 DA oo [ ¢(xi)}}. (19)
ha=1

ha=1

99.(xy)

Fig. 5. Representation of all the paths to be considered for the calculation of PO
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Generalizing the solution (17), we can then conclude that
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where y and J represent the units within the layers m and w + 1 respectively, and
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For the case where m is identifying the last hidden layer (the first layer starting
from the left), the inputs that receive the units are indeed the inputs of the system, so
(n+1)ti|n=n = X;, where II represents the last hidden layer. The formula (20), aligns

(22)

with our preliminary reasoning and the expected form (5).
Again we consider the averaging of all the possible paths to correct (20),
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Note that we  cannot replace the sum of the product,
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all the intermediate units considered must create a connected path. Instead, we can
group the series in the following way
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Note that in (25), the term [(hll)((l))](;b(xi) is not the argument of a hypothetical final
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series because all the paths have to end in the output unit [. However, when we study
the partial derivative of the 1oss ] With respect to the generic parameter (A)Wk j» and

we integrate the definition of 2 (/1) glven by (24), we can see how this new formula

has one more series whose argument is indeed [(hll)(?)]cp(x,) (and the error term e; =

Vi — 91(Xi)),
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So, following with the development of (25), we can replace the term [(hll)((l))]qﬁ(xi)

for Yi—; {[(1)(0)] o(x;) - ell} in order to obtain the definition of (/]D(X')
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At this point, we can define a recursive function as follows,
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Thus, using the recursive function defined at (28), we can redefine equation (27) as
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This is coherent with what we have for the case of a single hidden layer, i.e., equa-
D
tion (1). Note that F(Xi) does not depend on the cluster k nor on the dimension j
a
despite the fact that the parameter (’Bwk ; of equation (31) does.

. aWe, (%
The calculation of (/D“(X')
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the real input X; as input of the layer, we have “*Vt(x;), i.e., we substitute x;; for

A+ Iso d @® der (1) Isec (O -1 Af h
5(X1). We also denote “p& (%) = e (X4) [Z6o; Yane(x)] . After a short
straight-forward development, we obtain the partial derivatives of Pt (x,),

is similar to that studied in [7-8] but instead of having
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Using the learning rate and (31) we can then get
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where the update rule of (’Bwk ; s as follows,
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3 On How to Perform the Update While Minimizing the
Calculations

The update of the parameters requires the calculation of all the combinations of the
paths that link the unit of the parameter and the output units. This would be a heavy
calculation if it had to be recalculated at each layer. However, if we are performing
the update from right to left (starting with the output layer), then we can recycle the
calculations as it happens in the backpropagation method of neural networks.

In this section we explain how this recycling works and which variables should be
stored at each layer in order to be retrieved for the updates of the consecutive layers.

First, we need to input an observation (X;,y;) and calculate the prediction with the
current parameters of the CEFYDRA, §; = f(X;). Then, we start with the backprop-
agation phase. As mentioned, we move from the right to left.
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We start with the calculation of all the errors of the output units {e;,, €5, ..., €;.}
and we store these values.

We move on to the first hidden layer, and we go through each of the units within
the layer. At each unit, we obtain all the ¢(X;) variables that link the current unit of
the hidden layer with all the units of the output layer, calculating the value of

@®

F(xi) = % . {eil . [(hl)((l))] ¢(xi)}. Note that we do not need to recalculate the errors
1

hl

@®
at each F(xi); instead we retrieve the values from the memory. Then, we store the
hl
€3} @ ®
values of F(xi), F(xi), e F(Xi) so that we can retrieve them in the next layer.
1 2 H,

The time complexity of this step is O(H; X L), and the space complexity O(H,).
9 Wep, (x;)

(1)
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for all the hidden units of the first hidden layer, for all the parameters in each unit. In
a fully connected network, at each unit of the first hidden layer we have a total of
C X [(H, %X 3) + 1] parameters, where C is the number of clusters, H, the number of
input dimensions in the first hidden layer, 3 represents the variables ,(fl)uk > ;lll)vk j» and

1(111)mk j» and 1 represents the independent variable ,(lll)nk. Finally, we get the values of

3] (xi)
6(’111)wk1-

be stored for the update phase. The time complexity of this step is O(H; X C X
[(H, X 3) + 1]) (if all the units have the same number of clusters), and the space
complexity is O(H; X C X [(H, X 3) + 1]) which comes from the storage of the del-
tas.

Next, we move to the second hidden layer. At this point, the process is the same

Before moving on to the next layer, we calculate the partial derivatives

and then using the learning rates we calculate the deltas A }(111)Wk j» which need to

) ) )

with the exception that for the calculation of {F(Xi), F(xi), e F(xi) , instead of
1 2 H,

using the error terms as we did for the first hidden layer, we use the values of

€Y [€)) @
F(Xi)' F(Xi)' e F(Xi)}~
1 2 Hy

The Algorithms 1, 2, and 3 provide the pseudocode for all the three phases, predic-
tion, backpropagation, and update, respectively.
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Algorithm 1: Prediction of §; = f(x;) where f(-) is the entirc CEYDRA. Time com-

plexity O(IT x H;) where H, = Jpax H,,. Space complexity O (IT X Hy).
ef0,1,...,

Input: The observation vector X; of dimension N.
Output: The prediction vector ¥; of dimension L.

1 g« x
2 Descending order of layers: A « {l1,l1 —1,...,1,0 }
3 for each layer 4 in 4 do
4 for each unit « in layer A do
c c -1
5 D) [ Due(F ;) “zrc(wti)] - [Z %C(Mti)]
c=1 c=1

@ (@)
6 ati < aP (ti)

y)
7 Dt;[a] « Dt
8 end
9 end

10 ¢, « (O)ti
11 returny;

Algorithm 2: Backpropagation process to calculate the values of A(A(iwkj of the
CEFYDRA. The time complexity is 0(17 X Hy x (Hj_; +Cx H,1+1)) where Hj x

H;_1 = R dB3% Hp X H,_1 or Hy 1 XHy = . H,., X H,, thus we can simplify

the previous expressions to O(I1 X C x H;,, X Hy) with H; 1 X H; = X Hp,q X

ma.
w€{0,1,..,11}
H,. The space complexity is also O(IT X C X H;,, X H;), which comes from the space
needed by AW.

Inputs: x;,y;, Vi

Outputs: The update structure AW, organized in a [Layer, Unit] fashion,
which has as many entries as the number of units in the system, and each of
those entries AW|[A, a] is a three-dimensional matrix that stores the values of

@
A aij.

—_—

Initialize with null values: AW « 0

for each unit [ in layer 0 do
(0)

F(Xi) < yu— ()
1

end
Ascending order of layers: A « {1, ...,[1— 1,1 };
for each layer 4 in A do

for each unit « in layer A do

\S)

NN L AW
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8 for each unit § in layer 1 — 1 do

C -1 c
S R TR A HCO YIS #ED
c=1 c=1

-1 (1-1) (1-1) (1-1)
) {_2( [g/“lc(u)ti) ) [ ﬁuca ) (/Dta (xi) + ﬁvca] ' ﬁuca

) [(z—llgrc((a)ti) _ (A—l)tB (Xi)] + (A—ll;mctl . (l—};wk((l)ti)}}

10 end
11 H, < len(layer 1)
% = @-1
NA-1)
12 [0 7= ). {[(; PRIk r (xi)}
a =1
13 for each cluster k in unit a do
c -1
14 () < o (x)) [ Cote (xi)l
c=1
0Pt (%;)
15 a@?n =« (’sz(xi) ) (/Bwk(xi)
a'tk
16 Update the entry of the parameter n in W:
9Wtq(xi)
17 WI[2, a]{n} « 6(2n:
18 Aucxiliar variable 1:
19 (219k (xi) « _2(2fk(xi) ) (/guk (xi) - [(27'1( (x;) — Pt (Xi)]
20 for each dimension j in ®*Yt(x;) do
21 Auxiliar variable 2: “"00, (Xp) « Quy; - ¢Vt (%) + Qu;
0Pt (x;) 0Pt (%;)
2 E R A
a'l*kj a'‘k
oMt (x;)
> T () - 28, (x)
a’kj
” OVGX) 1 0t
A 1 A
6(£ukj ! 0 vk j
25 Update the entries in AW:
0Pt (%) 0Pt (x;) 0P, (x;
26 AWI[A, aly{m, a, b} « { (/Da( 1)’ ma( .)’ a;x( 1)}
0%umy; 0 g0y 0" 4by;
27 end
28 end
D
29 AW[A, a] < F(Xi) -AW[, a]
a
30 end
31 end

32 AW <15 AW
33  return AW
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Algorithm 3: Update process to calculate the parameters of the next epoch. Time com-

plexity O(Il x H;) where H; = Jpax H,. Space complexity 0(1) if we modify the

pre-existing structure W.

Inputs: The update structure AW, the initial structure of parameters W°.
Outputs: The updated parameter final structure W/,

1 Initialize with the initial structure: W/ « W0

2 Order of the layers: A « {I1,[1—1,...,1,0 }

3 for each layer 1in A4 do

4 for each unit « in layer 1 do

5 W[, aly; « AW[A, al; + W[4, ay;
6 end

7 end

8

return Wme%

Both the explainability and the self-reorganization concepts of CEFYDRA will be
covered in detail in a different paper. However, we make a note on these two so the
reader can understand further the implications of this technique.

The ability to explain the predictions generated (i.e., explainability) is a direct con-
sequence of using membership functions to cluster the information and later approxi-
mate with different expressions. At each unit of the CEFYDRA, the dominant indi-
vidual functions with highest membership values can be collected and aggregated to
generate a final linear approximation of the inputs and outputs, which can then be
displayed to the end user as an explanation of the prediction. Note that this explana-
tions refer to a specific instance.

The ability for self-reorganization of CEFYDRA comes from the fact that during
the learning, the membership functions of some clusters might get reduced to the
point where they become negligible. At this point, the network can be modified by
suppressing such cluster and reassigning it in a different unit.

4 Conclusions

We proposed an alternative core mathematical mechanism for the units of a neural
network. The CEFYDRA is an algorithm that leverages a fuzzy Takagi-Sugeno-Kang
inference to map the inputs of each unit via Cauchy membership functions and multi-
dimensional logistic functions. In this paper we focused our efforts on demonstrating
the learning formulation for the deep hidden layers of the CEFYDRA. We covered
the three laws that make this generalization possible, i.e., Displacement, Substitution
and Composition. Finally, we also propose a method to minimize the calculations
(induced from the fully connected system) and reduce the complexity in the training.
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