
Multiple Hidden Layered CEFYDRA: Cluster-first

Explainable FuzzY-based Deep self-Reorganizing Algorithm

Javier Viaña1[0000-0002-0563-784X], Stephan Ralescu2[0000-0002-3969-1342],

Vladik Kreinovich3[0000-0002-1244-1650], Anca Ralescu4[0000-0002-7564-3540],

and Kelly Cohen5[0000-0002-8655-1465]

1,2,3,4,5 University of Cincinnati, Cincinnati OH 45219, USA
1 Massachusetts Institute of Technology, Cambridge MA 02139, USA

vianajr@mail.uc.edu
vianajr@mit.edu

Abstract. We propose a deep learning algorithm that breaks with the paradigm
of weights and activation functions, CEFYDRA, a network of cluster-first
fuzzy-based regression algorithms. In this paper, we cover the generalization of
CEFYDRA to multilayered deep architectures. First, we provide the three laws
that make this generalization possible: Displacement, Substitution and Compo-
sition. Then, we obtain the update formulas for the parameters of deep hidden
layers. Finally, we show the pseudocode for prediction and update. We also
briefly mention the reasons to believe that this algorithm, named CEFYDRA, is
explainable and has the ability for plastic reorganization.

Keywords: Explainable AI, Neural Networks, Fuzzy Logic, Gradient Descent,
Deep Learning.

1 Introduction

In the last year, multiple explainable neural network algorithms were created, e.g., [1-

4]. Some of which have proved to be very successful in a variety of fields, such as the

discovery of exoplanets [5] or industrial automation [6]. In fact, based on the number

of publications and patents published over the last decade, it can be said that the neu-

ral networks have captured the attention of most of the research carried out in com-

puter science. Despite the advances made, a new core methodology different from the

classic mechanism of weights and activation functions is rarely proposed [7-8]. To a

certain extent this implies a limitation in the type of problems that we can tackle.

The research on alternative and novel basic neural architectures should not de-

crease. Even so, the main techniques to improve the performance in a problem solved

with deep learning continue to be the iterative (trial and error) modification of the

number of layers, units, or the shape of the activation functions. Meanwhile, the ave-

nue of varying the inner functioning of the neural unit itself remains partially unex-

ploited.

Preprint Version

Publisher: Springer, Nature

Collected work provisionally entitled: Applications of Fuzzy Techniques: Proceedings of the
2022 Annual Conference of the North American Fuzzy Information Processing Society NAFIPS

Book series: Advances in Intelligent Systems and Computing

Edited by: Scott Dick, Vladik Kreinovich, Pawan Lingras

2

2 On the Learning Formulas for the Hidden Layer

One of the goals of this research is to provide an alternative to the standard of

weights, biases, and activation functions of a regular neural network. We proposed a

model called CEFYDRA, an architecture whose units are based on the algorithms

covered in [9-13]. At every unit of the network, the inputs are grouped in fuzzy clus-

ters (whose degree of membership is defined through Cauchy membership functions),

and mapped with multidimensional logistic functions. The output of a unit is obtained

by merging the predictions of all the clusters using a Takagi-Sugeno-Kang approach.

All the parameters are optimized following a gradient descent learning.

In this section we focus on how to update the parameters of deep hidden layers of a

CEFYDRA.

In our formulation, the upper left index in parenthesis represents the layer refer-

ence (0 for output, 1 for the first hidden starting from the right), and the bottom index

represents the unit within that layer. We use 𝐱𝐢, 𝐲𝐢,	and 𝐲%𝐢 to denote the 𝑖"# input, out-

put, and predicted output, respectively. The symbols 𝑡 and 𝑤 represent the output and

a generic parameter of a given unit. Finally, indexes 𝑘 and 𝑗 refer to the cluster and

input dimension within the unit. The membership functions are obtained from Cauchy

distributions,

𝜇!"!

(𝜆) (𝐱𝐢) = 1
1 + (𝐮𝐜𝒉𝝀

(𝝀) ∙ 𝐭	(𝝀)𝟏) (𝐱𝐢) + 𝐯𝐜𝒉𝝀

(𝝀) (+ = ,1 +-. 𝑢!""!

(𝜆) ∙ 𝑡	(,)-)

"
(𝐱𝐢) + 𝑣!""!

(𝜆) 1+.

"/-

20-. (1)

In [7-8], the functions for the approximation of each cluster are linear, however, we

want to constrain the output of each unit between 0 and 1. Thus, we use logistic func-

tions instead, for a generic unit ℎ𝜆 within layer 𝜆,

𝑟$#𝜆

(𝜆) (𝐱𝐢) = 11 + exp 5− 𝐦𝐜𝒉𝝀

(𝝀) ∙ 𝐭	(𝝀+𝟏) (𝐱𝐢) − 𝑛$#𝜆

(𝜆) ;. (2)

Therefore, the parameters of each cluster are 𝐮𝐜𝒉𝝀

(𝝀) , 𝐯𝐜𝒉𝝀

(𝝀)
, 𝐦𝐜𝒉𝝀

(𝝀)
 and 𝑛+,𝜆

(𝜆) .

With that set up, we start from the premise that between any output of a unit from

the output layer and any other output of a unit from the first hidden layer exists a line-

ar proportionality,

.𝜕𝑦+𝑙(𝐱𝐢)𝜕 𝑤𝑘𝑗ℎ1
(-)

= 𝛫 𝜕 𝑡ℎ1	

(-) (𝐱𝐢)𝜕 𝑤𝑘𝑗ℎ1
(-)

, (3)

where 𝛫 is a parameter that depends on the connection between these two units. It can

be demonstrated that

.𝛫 = /(1)ℎ1 (0)𝑙 0𝜙(𝐱𝐢) ≝ 34 𝜇+.
(0) (𝐭𝐢)/

+0-

61-47 𝜇+.
(0) (𝐭𝐢) 8−2 𝜇+.

(0) (𝐭𝐢)/

+0-∙ < 𝑢+,.
(0) ∙ 𝑡,$	

(1) (𝐱𝐢) + 𝑣+,.
(0) @ ∙ 𝑢+,.

(0) ∙ / 𝑟+.(0) (𝐭𝐢) − 𝑦C.(𝐱𝐢)0+ 𝑚+,.
(0) ∙ 𝜛+.

(0) (𝐭𝐢)FG.
(4)

3

where 𝜛$/

(0) (𝐭𝐢) ≝ A 𝑟$/(0) (𝐭𝐢)B0 ∙ exp 5 𝑠$/

(0) (𝐭𝐢);.

Due to this decoupling in the consecutive outputs, we can expect a generalized

formula that relates any two non-consecutive outputs (from any two layers) of the

type 𝜕𝑦C.(𝐱𝐢)𝜕 𝑤34,%

(5)
= 𝜕 𝑡,%	

(5) (𝐱𝐢)𝜕 𝑤34,%

(5)
K𝜙(𝐱𝐢). (5)

We use the upper left index to distinguish between the hidden layers (Fig. 1). For a

given layer 𝜆, unit ℎ1, the output variable is 𝑡#'	
(1) .

Fig. 1. Representation of a CEFYDRA with several hidden layers and an output layer of di-
mension 𝐿. The two units highlighted referred to equation (1).

There are three laws that we can derive from (1):

Displacement Law. We can consider the equation (1) between every two consecu-

tive layers. If we use the hidden layers 2 and 1, we get 𝜕 𝑡#(
(1) (𝐱𝐢)𝜕 𝑤23#)
(2)

= E(2)
ℎ2

(1)

ℎ1
F𝜙(𝐱𝐢) 𝜕 𝑡#)	

(2) (𝐱𝐢)𝜕 𝑤23#)
(2)

, (6)

where

. E(2)
ℎ2

(1)

ℎ1
F 𝜙(𝐱𝐢) ≝ HI 𝜇$#(

(1) K 𝐭𝐢	(𝟐) L6

$78

M98IN 𝜇$#(
(1) K 𝐭𝐢	(𝟐) L6

$78∙ O−2 𝜇$#(
(1) K 𝐭𝐢	(𝟐) L ∙ A 𝑢$#)#(

(1) ∙ 𝑡#)	
(2) (𝐱𝐢) + 𝑣$#)#(

(1) B ∙ 𝑢$#)#(
(1)

∙ A 𝑟$#(
(1) K 𝐭𝐢	(𝟐) L − 𝑡#(

(1) (𝐱𝐢)B +			 𝑚$#)#(
(1) ∙ 𝜛$#(

(1) K 𝐭𝐢	(𝟐) LTU.
(7)

To obtain *(2)
ℎ2

(1)

ℎ1
+𝜙,𝐱𝐢-, we treat 𝑡#(

(1) as the output 𝑦%/ we used in (1) and 𝐭𝐢	(𝟐) in-

stead of the input 𝐭𝐢. Similarly, we also adapt the parameters of *(2)
ℎ2

(1)

ℎ1
+𝜙,𝐱𝐢- to those of

the ℎ8"# unit of the first hidden layer. Equation (6) is the particular form of the Dis-

placement Law between the unit ℎ8 of layer 1 and the unit ℎ0 of layer 2 (Fig. 2).

4

Fig. 2. Highlight of the two units within the CEFYDRA that refer to equation (6), i.e., the Dis-
placement Law in its particular form between hidden layers 1 and 2.

We now translate the particular form of the Displacement Law (6) to its general

form by considering the hidden layers 𝜆 and, 𝜆 − 1. We focus on the 𝛼"# output of

layer 𝜆 (𝑡:	(1)) and the 𝛽"# output of layer 𝜆 − 1 (𝑡;	(198)) as show in Fig. 3.

Fig. 3. Highlight of the two units within the CEFYDRA network that refer to equation (8), i.e.,
the Displacement Law in its general form between hidden layers 𝜆 − 1 and 𝜆.

The resulting general form is 𝜕 𝑡;	(198) (𝐱𝐢)𝜕 𝑤23:
(1)

= E(𝜆)
𝛼

(𝜆 − 1)

𝛽
F 𝜙(𝐱𝐢) 𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23:

(1)
. (8)

Substitution Law. This Law comes from the application of the chain rule in the
derivatives of (1) to consider any other parameter of the system, 𝜕𝑦%/(𝐱𝐢)𝜕𝑝 𝜕𝑝𝜕 𝑤23#(

(1)
= E(1)

ℎ1

(0)

𝑙
F𝜙(𝐱𝐢) 𝜕 𝑡#(

(1) (𝐱𝐢)𝜕𝑝 𝜕𝑝𝜕 𝑤23#(
(1)

, (9)

5

𝜕𝑦%/(𝐱𝐢)𝜕𝑝 = E(1)
ℎ1

(0)

𝑙
F𝜙(𝐱𝐢) 𝜕 𝑡#(

(1) (𝐱𝐢)𝜕𝑝 . (10)

If we consider the parameter 𝑝 = 𝑤23#)
(2)

 for the layer 2 in formula (10), then 𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23#)
(2)

= E(1)
ℎ1

(0)

𝑙
F𝜙(𝐱𝐢) 𝜕 𝑡#(

(1) (𝐱𝐢)𝜕 𝑤23#)
(2)

. (11)

In the general form, we can take the general expression (8) obtained for the Dis-

placement Law and consider any layer 𝜋 and any unit 𝛾 within the layer 𝜋, 𝜕 𝑡;	(198) (𝐱𝐢)𝜕 𝑤23A
(𝜋)

= E(𝜆)
𝛼

(𝜆 − 1)

𝛽
F 𝜙(𝐱𝐢) 𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23A

(𝜋)
. (12)

Composition Law. The Composition Law is achieved from the combination of

both the Displacement and Substitution Laws. For the particular cases (6) and (10), 𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23#)
(2)

= E(2)
ℎ2

(1)

ℎ1
F 𝜙(𝐱𝐢) ∙ E(1)ℎ1 (0)𝑙 F 𝜙(𝐱𝐢) 𝜕 𝑡#)	

(2) (𝐱𝐢)𝜕 𝑤23#)
(2)

. (13)

Equation (13) is certainly interesting, as it shows that
BCD.(𝐱𝐢)
B F012)
(2) is not only dependent

on *(1)
ℎ1

(0)

𝑙
+𝜙(𝐱𝐢) and

B "2)	(2) (𝐱𝐢)
B F012)
(2) (which can be understood since in

BCD.(𝐱𝐢)
B F012)
(2) we have both

the information of the unit ℎ0 of the second hidden layer and the information of the

unit 𝑙 of the output layer) but it is also dependent on *(2)
ℎ2

(1)

ℎ1
+𝜙(𝐱𝐢), i.e., the information

of the unit ℎ8 of the first hidden layer. This might seem confusing, since ℎ8 is not

present in either
BCD.(𝐱𝐢)
B F012)
(2) nor

B "2)	(2) (𝐱𝐢)
B F012)
(2) . In fact, there is no specification for ℎ8, therefore

ℎ8 could be any unit of the first hidden layer. This comes from the fact that the system

is overdetermined due to the fully connected network. In other words, there are many

paths that connect both ℎ0 and 𝑙, and they all provide a different result of
BCD.(𝐱𝐢)
B F012)
(2) .

Thus, we suggest that
BCD.(𝐱𝐢)
B F012)
(2) should be calculated by averaging the value obtained

from all the different paths (Fig. 4),

𝜕𝑦C.(𝐱𝐢)𝜕 𝑤34,*

(2)
= 1𝐻- 4 O/(2)

ℎ2

(1)

ℎ1
0𝜙(𝐱𝐢) ∙ /(1)ℎ1 (0)𝑙 0𝜙(𝐱𝐢) 𝜕 𝑡,*	

(2) (𝐱𝐢)𝜕 𝑤34,*

(2)
P9$

,$0-

. (14)

6

Fig. 4. Graphical representation of all the possible paths in the calculation of
:;<+(𝐱𝐢)

: >-./*

(2) . The term 𝑒?. represents the error of each output unit 𝑦?. − 𝑦C.(𝐱𝐢).

To calculate the general form of (13), we can now study the expression of
BCD.(𝐱𝐢)
B F0124
(3) .

We start from the expression of the particular Composition Law, and we apply the

Substitution Law, i.e., instead of deriving with respect to 𝑤23#)
(2)

, we derive with re-

spect to 𝑤23#4
(3)

, where 3 is the third hidden layer and ℎG is a generic hidden neuron,

again, the factors 𝜙/(0) (𝐱𝐢) and 𝜙#(
(1) (𝐱𝐢) do not depend on 𝑤23#)

(2)
 or 𝑤23#4

(3)
, thus 𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23#4

(3)
= E(2)

ℎ2

(1)

ℎ1
F 𝜙(𝐱𝐢) ∙ E(1)ℎ1 (0)𝑙 F 𝜙(𝐱𝐢) 𝜕 𝑡#)	

(2) (𝐱𝐢)𝜕 𝑤23#4
(3)

, (15)

now we consider the Displacement Law for layers 3 and 2, let us call 𝑡#4	
(3) the in-

put before 𝑡#)	
(2) , 𝜕 𝑡#)	

(2) (𝐱𝐢)𝜕 𝑤23#4
(3)

= E(3)
ℎ3

(2)

ℎ2
F 𝜙(𝐱𝐢) 𝜕 𝑡#4	

(3) (𝐱𝐢)𝜕 𝑤23#4
(3)

, (16)

and we combine it with the result obtained in (15), 𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23#4
(3)

= E(3)
ℎ3

(2)

ℎ2
F 𝜙(𝐱𝐢) ∙ E(2)ℎ2 (1)ℎ1 F 𝜙(𝐱𝐢) ∙ E(1)ℎ1 (0)𝑙 F 𝜙(𝐱𝐢) 𝜕 𝑡#4	

(3) (𝐱𝐢)𝜕 𝑤23#4
(3)

. (17)

As it happened in (13), this particular case of the Composition Law (17), which de-

fines the learning of the third layer’s parameters, also depends on the path and the

connections chosen in layers 1 and 2. Hence we use the average of all the possible

paths as shown in Fig. 5,

𝜕𝑦C.(𝐱𝐢)𝜕 𝑤34,1

(3)
= 1𝐻- ∙ 𝐻A 4 4 R/(3)ℎ3 (2)ℎ2 0𝜙(𝐱𝐢) ∙ /(2)ℎ2 (1)ℎ1 0 𝜙(𝐱𝐢) ∙ /(1)ℎ1 (0)𝑙 0𝜙(𝐱𝐢) 𝜕 𝑡,1	

(3) (𝐱𝐢)𝜕 𝑤34,1

(3) S9$

,$0-

9*

,*0-

, (18)

7

𝜕𝑦C.(𝐱𝐢)𝜕 𝑤34,1

(3)
= 𝜕 𝑡,1	

(3) (𝐱𝐢)𝜕 𝑤34,1

(3)

1𝐻A 4 T/(3)ℎ3 (2)ℎ2 0𝜙(𝐱𝐢) ∙ 1𝐻- 4 8/(2)ℎ2 (1)ℎ1 0𝜙(𝐱𝐢) ∙ /(1)ℎ1 (0)𝑙 0 𝜙(𝐱𝐢)F9$

,$0-

U9*

,*0-

. (19)

Fig. 5. Representation of all the paths to be considered for the calculation of
:;<+(𝐱𝐢)

: >-./1

(3) .

Generalizing the solution (17), we can then conclude that

𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23:
(1)

= 𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23:
(1)

\E(𝜋 + 1)

𝛿

(𝜋)

𝛾
F 𝜙(𝐱𝐢)198

𝜋7M

, (20)

𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23:
(1)

= 𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23:
(1)

\OE(𝜋 + 1)

𝛿

(𝜋)

𝛾
F 𝜙(𝐱𝐢)T198

𝜋78

∙ E(1)
ℎ1

(0)

𝑙
F𝜙(𝐱𝐢). (21)

where 𝛾 and δ represent the units within the layers 𝜋 and 𝜋 + 1 respectively, and

8

E(𝜋 + 1)

𝛿

(𝜋)

𝛾
F𝜙(𝐱𝐢) = HI 𝜇$A

(𝜋) K 𝐭𝐢	(𝝅+𝟏) L6

$78

M98IN 𝜇$A
(𝜋) K 𝐭𝐢	(𝝅+𝟏) L6

$78∙ O−2 𝜇$A
(𝜋) K 𝐭𝐢	(𝝅+𝟏) L ∙ A 𝑢$NA

(𝜋) ∙ 𝑡N	(𝜋+1) (𝐱𝐢) + 𝑣$NA
(𝜋) B ∙ 𝑢$NA

(𝜋)

∙ A 𝑟$A
(𝜋) K 𝐭𝐢	(𝝅+𝟏) L − 𝑡A	(𝜋) (𝐱𝐢)B +			 𝑚$NA

(𝜋) ∙ 𝜛$A
(𝜋) K 𝐭𝐢	(𝝅+𝟏) LTU.

(22)

For the case where 𝜋 is identifying the last hidden layer (the first layer starting

from the left), the inputs that receive the units are indeed the inputs of the system, so 𝐭𝐢	(𝝅P𝟏)]
R7S

= 𝐱𝐢, where 𝛱 represents the last hidden layer. The formula (20), aligns

with our preliminary reasoning and the expected form (5).

Again we consider the averaging of all the possible paths to correct (20),

𝜕𝑦77(𝐱𝐢)𝜕 𝑤89:

(,)
= 1∏ 𝐻;,0-

;/-

- ;𝜕 𝑡:	(,) (𝐱𝐢)𝜕 𝑤89:
(,)

=>?(𝜋 + 1)𝛿 (𝜋)𝛾 C 𝜙(𝐱𝐢)E ∙ ?(1)ℎ- (0)𝑙 C 𝜙(𝐱𝐢)
,0-

;/-

I.%,…,.!&%

"%,…,"!&%/-

, (23)

𝜕𝑦77(𝐱𝐢)𝜕 𝑤89:

(,)
= 𝜕 𝑡:	(,) (𝐱𝐢)𝜕 𝑤89:

(,)

1∏ 𝐻;,0-
;/-

- ;=>?(𝜋 + 1)𝛿 (𝜋)𝛾 C 𝜙(𝐱𝐢)E ∙ ?(1)ℎ- (0)𝑙 C 𝜙(𝐱𝐢)
,0-

;/-

I.%,…,.!&%

"%,…,"!&%/-

. (24)

Note that we cannot replace the sum of the product, ∑ O∏ E(𝜋 + 1)

𝛿

(𝜋)

𝛾
F 𝜙(𝐱𝐢)198

𝜋78 TT(,…,T'7(
#(,…,#'7(78 , for the product of the sum, ∏ O∑ E(𝜋 + 1)

𝛿

(𝜋)

𝛾
F 𝜙(𝐱𝐢)T𝜋

#𝜋78
T198

𝜋78 , since the terms *(𝜋 + 1)
𝛿

(𝜋)

𝛾
+𝜙 are not independent, i.e.,

all the intermediate units considered must create a connected path. Instead, we can

group the series in the following way 1∏ 𝐻𝜋"#$
𝜋%$

4 TK8/(𝜋 + 1)
𝛿

(𝜋)
𝛾 0 𝜙(𝐱𝐢)F ∙ /(1)ℎ1 (0)𝑙 0𝜙(𝐱𝐢)"#$

𝜋%$

U'$,…,'%3$

$,…,%3$%$

= 1𝐻𝜆−1 4 8/(𝜆)𝛼 (𝜆 − 1)
𝛽 0𝜙(𝐱𝐢)𝐻𝜆−1

ℎ𝜆−1=1

∙ W… ∙ 1𝐻+ T4 /(3)ℎ3 (2)ℎ2 0𝜙(𝐱𝐢) 1𝐻$ T4 8/(2)ℎ2 (1)ℎ1 0𝜙(𝐱𝐢) ∙ /(1)ℎ1 (0)𝑙 0 𝜙(𝐱𝐢)F'$

*$%$

U'*

**%$

UY
⎭⎪⎬
⎪⎫.

(25)

Note that in (25), the term *(1)
ℎ1

(0)

𝑙
+𝜙,𝐱𝐢- is not the argument of a hypothetical final

series because all the paths have to end in the output unit 𝑙. However, when we study

the partial derivative of the loss 𝐽 with respect to the generic parameter 𝑤23:
(1)

, and

we integrate the definition of
BCD.(𝐱𝐢)
B F01@(')

 given by (24), we can see how this new formula

has one more series whose argument is indeed *(1)
ℎ1

(0)

𝑙
+𝜙,𝐱𝐢- (and the error term 𝑒V/ =𝑦V/ − 𝑦%/(𝐱𝐢)),

𝜕𝐽(𝐱𝐢)𝜕 𝑤23:
(1)

= −1𝐿Id[𝑦V/ − 𝑦%/(𝐱𝐢)] 𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23:
(1)

g = −1𝐿Id𝑒V/ 𝜕𝑦%/(𝐱𝐢)𝜕 𝑤23:
(1)

g =W

/78

W

/78

 (26)

9

= −𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23:
(1)

1∏ 𝐻𝜋198
𝜋78

I i\OE(𝜋 + 1)
𝛿

(𝜋)
𝛾
F𝜙(𝐱𝐢)T198

𝜋78

T(,…,T'7(

#(,…,#'7(78

∙ 1𝐿IOE(1)
ℎ1

(0)
𝑙
F 𝜙(𝐱𝐢) ∙ 𝑒V/TW

/78

j.
So, following with the development of (25), we can replace the term *(1)

ℎ1

(0)

𝑙
+𝜙,𝐱𝐢-

for ∑ OE(1)
ℎ1

(0)

𝑙
F 𝜙(𝐱𝐢) ∙ 𝑒V/TW

/78 in order to obtain the definition of
BX(𝐱𝐢)
B F01@(')

,

1∏ 𝐻𝜋198
𝜋78

I i\OE(𝜋 + 1)

𝛿

(𝜋)

𝛾
F 𝜙(𝐱𝐢)T ∙IOE(1)

ℎ1

(0)

𝑙
F 𝜙(𝐱𝐢) ∙ 𝑒V/TW

/78

198

𝜋78

jT(,…,T'7(

#(,…,#'7(78
=

1𝐻"#$ 4 8/(𝜆)
𝛼

(𝜆 − 1)

𝛽
0𝜙(𝐱𝐢)'%3$

*%3$%$

∙ W… ∙ 1𝐻+ T4 /(3)ℎ3 (2)ℎ2 0 𝜙(𝐱𝐢) 1𝐻$ T4 R/(2)ℎ2 (1)ℎ1 0 𝜙(𝐱𝐢) ∙ 1𝐿48/(1)ℎ1 (0)𝑙 0𝜙(𝐱𝐢) ∙ 𝑒,-F.

-%$

S'$

*$%$

U'*

**%$

UY
⎭⎪⎬
⎪⎫.

(27)

At this point, we can define a recursive function as follows,

⎩⎪
⎨
⎪⎧(𝜋 + 1)

Γ
𝛿

(𝐱𝐢) = 1𝐻RIdE(𝜋 + 1)

𝛿

(𝜋)

𝛾
F 𝜙(𝐱𝐢) ∙ (𝜋)Γ

𝛾

(𝐱𝐢)g𝐻A

𝛾=1

			𝐢𝐟			𝜋 > −1
(0)

Γ
𝑙

(𝐱𝐢) = 𝑒V/ = 𝑦V/ − 𝑦%/(𝐱𝐢)
 (28)

so that

(1)

Γ
ℎ1

(𝐱𝐢) = 1𝐿IdE(1)
ℎ1

(0)

𝑙
F𝜙(𝐱𝐢) ∙ (0)Γ

𝑙

(𝐱𝐢)g𝐿

𝑙=1

= 1𝐿IOE(1)
ℎ1

(0)

𝑙
F 𝜙(𝐱𝐢) ∙ 𝑒V/T𝐿

𝑙=1

. (29)

Thus, using the recursive function defined at (28), we can redefine equation (27) as

1∏ 𝐻𝜋"#$
𝜋%$

4 TK8/(𝜋 + 1)
𝛿

(𝜋)
𝛾 0 𝜙(𝐱𝐢)F ∙48/(1)ℎ1 (0)𝑙 0𝜙(𝐱𝐢) ∙ 𝑒,-F.

-%$

"#$

𝜋%$

U'$,…,'%3$

$,…,%3$%$

= (𝜆)
Γ𝛼
(𝐱𝐢). (30)

Finally, the formula of
BX(𝐱𝐢)
B F01@(')

 becomes

𝜕𝐽(𝐱𝐢)𝜕 𝑤23:
(1)

= −(𝜆)Γ
𝛼

(𝐱𝐢) 𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23:
(1)

. (31)

10

This is coherent with what we have for the case of a single hidden layer, i.e., equa-

tion (1). Note that

(𝜆)

Γ
𝛼

(𝐱𝐢) does not depend on the cluster 𝑘 nor on the dimension 𝑗
despite the fact that the parameter 𝑤23:

(1)
 of equation (31) does.

The calculation of
B "@	(') (𝐱𝐢)
B F01@(')

 is similar to that studied in [7-8] but instead of having

the real input 𝐱𝐢 as input of the layer, we have 𝐭(𝐱𝐢)	
(𝝀+𝟏) , i.e., we substitute 𝑥V3 for 𝑡3	(𝜆+1) (𝐱𝐢). We also denote 𝜉2#

(1) (𝐱𝐢) ≝ 𝜇2#

(1) (𝐱𝐢) ∙ A∑ 𝜇$#

(1) (𝐱𝐢)6
$78 B98. After a short

straight-forward development, we obtain the partial derivatives of 𝑡:	(1) (𝐱𝐢), 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑚23:
(𝜆)

= 𝜉
2:

(𝜆) (𝐱𝐢) ∙ 𝜛2:
(𝜆) (𝐱𝐢) ∙ 𝑡3	(𝜆+1) (𝐱𝐢), (32)

𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑛2:
(𝜆)

= 𝜉
2:

(𝜆) (𝐱𝐢) ∙ 𝜛2:
(𝜆) (𝐱𝐢), (33)

𝜕 𝑡:	(,) (𝐱𝐢)𝜕 𝑢89:

(,)
= −2 𝜉8:

(,) (𝐱𝐢) ∙ 𝜇8:
(,) (𝐱𝐢) ∙ N 𝑟8:

(,) (𝐱𝐢) − 𝑡:	(,) (𝐱𝐢)P ∙ . 𝑢89:
(,) ∙ 𝑡9	(,)-) (𝐱𝐢) + 𝑣89:

(,) 1
∙ 𝑡9	(,)-) (𝐱𝐢),

(34)

𝜕 𝑡:	(,) (𝐱𝐢)𝜕 𝑣89:

(,)
= −2 𝜉8:

(,) (𝐱𝐢) ∙ 𝜇8:
(,) (𝐱𝐢) ∙ N 𝑟8:

(,) (𝐱𝐢) − 𝑡:	(,) (𝐱𝐢)P ∙ . 𝑢89:
(,) ∙ 𝑡9	(,)-) (𝐱𝐢) + 𝑣89:

(,) 1. (35)

Using the learning rate and (31) we can then get

∆ 𝑤23:
(1) = −𝜂 𝜕𝐽(𝐱𝐢)𝜕 𝑤23:

(1)
= 𝜂 ∙ (𝜆)Γ

𝛼

(𝐱𝐢) 𝜕 𝑡:	(1) (𝐱𝐢)𝜕 𝑤23:
(1)

, (36)

where the update rule of 𝑤23:
(1)

 is as follows,

𝑤23YZF:
(1) = ∆ 𝑤23:

(1) + 𝑤23[/\:
(1) . (37)

3 On How to Perform the Update While Minimizing the

Calculations

The update of the parameters requires the calculation of all the combinations of the

paths that link the unit of the parameter and the output units. This would be a heavy

calculation if it had to be recalculated at each layer. However, if we are performing

the update from right to left (starting with the output layer), then we can recycle the

calculations as it happens in the backpropagation method of neural networks.

In this section we explain how this recycling works and which variables should be

stored at each layer in order to be retrieved for the updates of the consecutive layers.

First, we need to input an observation (𝐱𝐢, 𝐲𝐢) and calculate the prediction with the

current parameters of the CEFYDRA, 𝐲%𝐢 = 𝑓(𝐱𝐢). Then, we start with the backprop-

agation phase. As mentioned, we move from the right to left.

11

We start with the calculation of all the errors of the output units {𝑒V8, 𝑒V0, … , 𝑒VW}
and we store these values.

We move on to the first hidden layer, and we go through each of the units within

the layer. At each unit, we obtain all the 𝜙(𝐱𝐢) variables that link the current unit of

the hidden layer with all the units of the output layer, calculating the value of
(1)

Γ
ℎ1

(𝐱𝐢) = 8

W
∑ O𝑒V/ ∙ E(1)ℎ1 (0)𝑙 F𝜙(𝐱𝐢)TW
/78 . Note that we do not need to recalculate the errors

at each

(1)

Γ
ℎ1

(𝐱𝐢); instead we retrieve the values from the memory. Then, we store the

values of d(1)Γ
1

(𝐱𝐢), (1)Γ
2

(𝐱𝐢), … , (1)Γ
𝐻1

(𝐱𝐢)g so that we can retrieve them in the next layer.

The time complexity of this step is 𝑂(𝐻8 × 𝐿), and the space complexity 𝑂(𝐻8).
Before moving on to the next layer, we calculate the partial derivatives

B "2((() (𝐱𝐢)
B F012(
(()

for all the hidden units of the first hidden layer, for all the parameters in each unit. In

a fully connected network, at each unit of the first hidden layer we have a total of 𝐶 × [(𝐻0 × 3) + 1] parameters, where 𝐶 is the number of clusters, 𝐻0 the number of

input dimensions in the first hidden layer, 3 represents the variables 𝑢23#(
(1)

, 𝑣23#(
(1)

, and 𝑚23#(
(1)

, and 1 represents the independent variable 𝑛2#(
(1)

. Finally, we get the values of
BX(𝐱𝐢)
B F012(
(() and then using the learning rates we calculate the deltas ∆ 𝑤23#(

(1)
, which need to

be stored for the update phase. The time complexity of this step is 𝑂(𝐻8 × 𝐶 ×[(𝐻0 × 3) + 1]) (if all the units have the same number of clusters), and the space

complexity is 𝑂(𝐻8 × 𝐶 × [(𝐻0 × 3) + 1]) which comes from the storage of the del-

tas.

Next, we move to the second hidden layer. At this point, the process is the same

with the exception that for the calculation of d(2)Γ
1

(𝐱𝐢), (2)Γ
2

(𝐱𝐢), … , (2)Γ
𝐻2

(𝐱𝐢)g, instead of

using the error terms as we did for the first hidden layer, we use the values of

d(1)Γ
1

(𝐱𝐢), (1)Γ
2

(𝐱𝐢), … , (1)Γ
𝐻1

(𝐱𝐢)g.
The Algorithms 1, 2, and 3 provide the pseudocode for all the three phases, predic-

tion, backpropagation, and update, respectively.

12

Algorithm 1: Prediction of 𝐲%𝐢 = 𝑓(𝐱𝐢) where 𝑓(∙) is the entire CEYDRA. Time com-

plexity 𝑂(𝛱 × 𝐻1) where 𝐻𝜆 = max
7∈{:,$,…,;}

𝐻7. Space complexity 𝑂(𝛱 × 𝐻1).

1

2

3

4

5

6

7

8

9

10

11

Input: The observation vector 𝐱𝐢 of dimension 𝑁.

Output: The prediction vector 𝐲%𝐢 of dimension 𝐿.
 𝐭	(𝚷+𝟏)

𝐢 ← 𝐱𝐢
Descending order of layers: 𝜦 ← {𝛱, 𝛱 − 1, … , 1,0	}
for each layer 𝜆 in 𝜦 do

for each unit 𝛼 in layer	𝜆 do

𝐏𝜶(𝝀) (𝐭𝐢) ← HI 𝜇$:
(1) K 𝐭	(𝝀+𝟏)

𝐢L ∙ 𝑟$:
(1) K 𝐭	(𝝀+𝟏)

𝐢L6

$78

M ∙ HI 𝜇$:
(1) K 𝐭	(𝝀+𝟏)

𝐢L6

$78

M98

𝑡:(1) V ← 𝐏𝜶(𝝀) (𝐭𝐢) 𝐭	(𝝀)
𝐢[𝛼] ← 𝑡:(1) V

end

end 𝐲%𝐢 ← 𝐭	(𝟎)
𝐢

return 𝐲%𝐢

Algorithm 2: Backpropagation process to calculate the values of ∆ 𝑤23:
(1)

 of the

CEFYDRA. The time complexity is 𝑂K𝛱 × 𝐻1 × (𝐻198 + 𝐶 × 𝐻1P8)L where 𝐻𝜆 ×𝐻𝜆−1 = max
7∈{$,…,;}

𝐻7 ×𝐻7−1 or 𝐻𝜆+1 ×𝐻𝜆 = max
7∈{:,$,…,;}

𝐻7=$ ×𝐻7, thus we can simplify

the previous expressions to 𝑂(𝛱 × 𝐶 × 𝐻1P8 × 𝐻1) with 𝐻𝜆+1 ×𝐻𝜆 = max
7∈{:,$,…,;}

𝐻7=$ ×𝐻7. The space complexity is also 𝑂(𝛱 × 𝐶 × 𝐻1P8 × 𝐻1), which comes from the space

needed by ∆𝐖.

1

2

3

4

5

6

7

Inputs: 𝐱𝐢, 𝐲𝐢, 𝐲%𝐢
Outputs: The update structure ∆𝐖, organized in a [Layer, Unit] fashion,

which has as many entries as the number of units in the system, and each of

those entries ∆𝐖[𝜆, 𝛼] is a three-dimensional matrix that stores the values of ∆ 𝑤23:
(1)

.

Initialize with null values: ∆𝐖 ← 𝟎

for each unit 𝑙 in layer	0 do
(0)

Γ
𝑙

(𝐱𝐢) ← 𝑦V/ − 𝑦%/(𝐱𝐢)
end

Ascending order of layers: 𝜦 ← {1, … , 𝛱 − 1, 𝛱	};
for each layer 𝜆 in 𝜦 do

for each unit 𝛼 in layer	𝜆 do

13

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

for each unit 𝛽 in layer	𝜆 − 1 do

E(𝜆)
𝛼

(𝜆 − 1)

𝛽
F 𝜙(𝐱𝐢) ← HI 𝜇$;

(𝜆−1) K 𝐭𝐢	(𝝀) L6

$78

M98IO 𝜇$;

(𝜆−1) K 𝐭𝐢	(𝝀) L6

$78

∙ O−2 𝜇$;

(𝜆−1) K 𝐭𝐢	(𝝀) L ∙ A 𝑢$:;

(𝜆−1) ∙ 𝑡:	(𝜆) (𝐱𝐢) + 𝑣$:;

(𝜆−1) B ∙ 𝑢$:;

(𝜆−1)

∙ A 𝑟$;

(𝜆−1) K 𝐭𝐢	(𝝀) L − 𝑡;	(𝜆−1) (𝐱𝐢)B +			 𝑚$:;

(𝜆−1) ∙ 𝜛2;

(𝜆−1) K 𝐭𝐢	(𝝀) LTU
end 𝐻" ← len(𝐥𝐚𝐲𝐞𝐫	𝜆)
(𝜆)

Γ
𝛼

(𝐱𝐢) ← 1𝐻𝜆−1 I dE(𝜆)
𝛼

(𝜆 − 1)

𝛽
F 𝜙(𝐱𝐢) ∙ (𝜆 − 1)

Γ
𝛽

(𝐱𝐢)g𝐻'7(

𝛽=1

for each cluster 𝑘 in unit 𝛼 do

𝜉2:
(𝜆) (𝐱𝐢) ← 𝜇2:

(𝜆) (𝐱𝐢) ∙ HI 𝜇$:
(𝜆) (𝐱𝐢)6

$78

M98

𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑛2:
(𝜆)

← 𝜉
2:

(𝜆) (𝐱𝐢) ∙ 𝜛2:
(𝜆) (𝐱𝐢)

Update the entry of the parameter 𝑛 in 𝐖:

 𝐖[𝜆, 𝛼]a{𝑛} ← B "@	(𝜆) (𝐱𝐢)
B Y0@(𝜆)

Auxiliar variable 1:

 𝜗2:
(𝜆) (𝐱𝐢) ← −2 𝜉

2:

(𝜆) (𝐱𝐢) ∙ 𝜇2:
(𝜆) (𝐱𝐢) ∙ A 𝑟2:

(𝜆) (𝐱𝐢) − 𝑡:	(𝜆) (𝐱𝐢)B
for each dimension 𝑗 in 𝐭(𝐱𝐢)	

(𝛌+𝟏) do

Auxiliar variable 2: 𝜚2:
(𝜆+1) (𝐱𝐢) ← 𝑢23:

(𝜆) ∙ 𝑡3	(𝜆+1) (𝐱𝐢) + 𝑣23:
(𝜆)

 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑚23:
(𝜆)

← 𝑡3	(𝜆+1) (𝐱𝐢) 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑛2:
(𝜆)

𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑣23:
(𝜆)

← 𝜚2:
(𝜆+1) (𝐱𝐢) ∙ 𝜗2:

(𝜆) (𝐱𝐢) 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑢23:
(𝜆)

← 𝑡3	(𝜆+1) (𝐱𝐢) 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑣23:
(𝜆)

Update the entries in ∆𝐖: 															∆𝐖[𝜆, 𝛼]ab{𝑚, 𝑎, 𝑏} ← �𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑚23:
(𝜆)

, 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑎23:
(𝜆)

, 𝜕 𝑡:	(𝜆) (𝐱𝐢)𝜕 𝑏23:
(𝜆)

�

end

end

∆𝐖[𝜆, 𝛼] ← (𝜆)

Γ
𝛼

(𝐱𝐢) ∙ ∆𝐖[𝜆, 𝛼]
end

end ∆𝐖 ← 𝜂 ∙ ∆𝐖

return ∆𝐖

14

Algorithm 3: Update process to calculate the parameters of the next epoch. Time com-

plexity 𝑂(𝛱 × 𝐻1) where 𝐻𝜆 = max
7∈{:,$,…,;}

𝐻7. Space complexity 𝑂(1) if we modify the

pre-existing structure 𝐖.

1

2

3

4

5

6

7

8

Inputs: The update structure ∆𝐖, the initial structure of parameters 𝐖𝟎.

Outputs: The updated parameter final structure 𝐖𝒇.

Initialize with the initial structure: 𝐖𝒇 ←𝐖𝟎

Order of the layers: 𝜦 ← {𝛱, 𝛱 − 1, … , 1,0	}
for each layer 𝜆 in 𝜦 do

for each unit 𝛼 in layer	𝜆 do 𝐖𝒏𝒆𝒘[𝜆, 𝛼]ab ← ∆𝐖[𝜆, 𝛼]ab +𝐖𝒐𝒍𝒅[𝜆, 𝛼]ab
end

end

return 𝐖𝒏𝒆𝒘

Both the explainability and the self-reorganization concepts of CEFYDRA will be

covered in detail in a different paper. However, we make a note on these two so the

reader can understand further the implications of this technique.

The ability to explain the predictions generated (i.e., explainability) is a direct con-

sequence of using membership functions to cluster the information and later approxi-

mate with different expressions. At each unit of the CEFYDRA, the dominant indi-
vidual functions with highest membership values can be collected and aggregated to

generate a final linear approximation of the inputs and outputs, which can then be

displayed to the end user as an explanation of the prediction. Note that this explana-

tions refer to a specific instance.

The ability for self-reorganization of CEFYDRA comes from the fact that during

the learning, the membership functions of some clusters might get reduced to the

point where they become negligible. At this point, the network can be modified by

suppressing such cluster and reassigning it in a different unit.

4 Conclusions

We proposed an alternative core mathematical mechanism for the units of a neural

network. The CEFYDRA is an algorithm that leverages a fuzzy Takagi-Sugeno-Kang

inference to map the inputs of each unit via Cauchy membership functions and multi-

dimensional logistic functions. In this paper we focused our efforts on demonstrating

the learning formulation for the deep hidden layers of the CEFYDRA. We covered

the three laws that make this generalization possible, i.e., Displacement, Substitution

and Composition. Finally, we also propose a method to minimize the calculations

(induced from the fully connected system) and reduce the complexity in the training.

15

Acknowledgements

The project that generated these results was supported by a grant from the ”la Caixa”
Banking Foundation (ID 100010434), whose code is LCF / BQ / AA19 / 11720045.

References

1. Yang, Z., Zhang, A., Sudjianto, A.: GAMI-Net: An explainable neural network based on
generalized additive models with structured interactions. Pattern Recognition, 120 (2021).

2. Lee, Y. Extraction of Competitive Factors in a Competitor Analysis Using an Explainable
Neural Network. Neural Processing Letters 53, 1979–1994 (2021).

3. Fauvel, K., Lin, T., Masson, V., Fromont, É., Termier, A.: XCM: An Explainable Convo-
lutional Neural Network for Multivariate Time Series Classification. Mathematics 9 (23),
(2021).

4. Sasaki, H., Hidaka, Y., Igarashi, H.: Explainable Deep Neural Network for Design of Elec-
tric Motors. IEEE Transactions on Magnetics 57(6), 1-4 (2021).

5. Valizadegan, H. et al.: ExoMiner: A Highly Accurate and Explainable Deep Learning
Classifier that Validates 301 New Exoplanets. arXiv:2111.10009 (2021).

6. Kim, M. S., Yun, J. P., Park, P.: An Explainable Convolutional Neural Network for Fault
Diagnosis in Linear Motion Guide. In IEEE Transactions on Industrial Informatics, 17 (6),
4036-4045 (2021).

7. Gallego, V., Ríos Insua, D.: Current Advances in Neural Networks. Annual Review of Sta-
tistics and Its Application 9(1), (2022).

8. Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., Müller, K. -R.: Explaining Deep
Neural Networks and Beyond: A Review of Methods and Applications. Proceedings of the
IEEE 109(3), 247-278 (2021).

9. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V: Localized Learning A Pos-
sible Alternative to Current Deep Learning Techniques. In: Melin, P., Castillo, O. (eds.)
Studies in Computational Intelligence (2021).

10. Viaña, J., Cohen, K.: Fuzzy-Based, Noise-Resilient, Explainable Algorithm for Regres-
sion. In: Explainable AI and Other Applications of Fuzzy Techniques. 1st edn. Springer,
Cham (2022).

11. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V.: Extension to multi-
dimensional problems of a fuzzy-based explainable and noise-resilient algorithm”. In: Pro-
ceedings of the 14th International Workshop on Constraint Programming and Decision
Making CoProd’2021, Szeged, Hungary (2021).

12. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V.: Why Cauchy Membership
Functions: Reliability. Advances in Artificial Intelligence and Machine Learning, (To Ap-
pear).

13. Viaña, J., Ralescu, S., Cohen, K., Ralescu, A., Kreinovich, V.: Why Cauchy Membership
Functions: Efficiency. Advances in Artificial Intelligence and Machine Learning, 1(1), 81-
88 (2021).

